Designing added-protein yogurts: Relationship between in vitro digestion behavior and structure

Designing added-protein yogurts: Relationship between in vitro digestion behavior and structure Increasing the protein content of a food is an effective way to deliver enhanced satiating signals to the consumer. Protein structures are related to their breakdown properties under gastric conditions and understanding their in vitro proteolysis could provide valuable information on their contribution to satiating ability. Four different yogurts were formulated with double the amount of protein by adding extra skimmed milk powder (MP), whey protein concentrate (WPC), calcium caseinate (CAS) or a blend of whey protein concentrate and calcium caseinate (MIX). Their rheological behavior and light microscopy and SDS-PAGE data were analyzed at different times of oral plus gastric in vitro digestion (0, 30, 60 and 120 min). The yogurts with added whey protein (WPC and MIX) maintained high consistency index values throughout in vitro digestion, which is related to increased gastric distension and to an extended feeling of fullness. In addition, the rapid gastric emptying of whey proteins in a more unaltered form than casein may result in a stronger increase in postprandial plasma amino acid concentration, increasing the satiating signals. Consequently, adding whey protein to the formulation of yogurts can enhance satiety, despite processing steps such as thermal treatment and fermentation. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Food Hydrocolloids Elsevier

Designing added-protein yogurts: Relationship between in vitro digestion behavior and structure

Loading next page...
 
/lp/elsevier/designing-added-protein-yogurts-relationship-between-in-vitro-nNvGkYDNVj
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0268-005X
eISSN
1873-7137
D.O.I.
10.1016/j.foodhyd.2017.05.026
Publisher site
See Article on Publisher Site

Abstract

Increasing the protein content of a food is an effective way to deliver enhanced satiating signals to the consumer. Protein structures are related to their breakdown properties under gastric conditions and understanding their in vitro proteolysis could provide valuable information on their contribution to satiating ability. Four different yogurts were formulated with double the amount of protein by adding extra skimmed milk powder (MP), whey protein concentrate (WPC), calcium caseinate (CAS) or a blend of whey protein concentrate and calcium caseinate (MIX). Their rheological behavior and light microscopy and SDS-PAGE data were analyzed at different times of oral plus gastric in vitro digestion (0, 30, 60 and 120 min). The yogurts with added whey protein (WPC and MIX) maintained high consistency index values throughout in vitro digestion, which is related to increased gastric distension and to an extended feeling of fullness. In addition, the rapid gastric emptying of whey proteins in a more unaltered form than casein may result in a stronger increase in postprandial plasma amino acid concentration, increasing the satiating signals. Consequently, adding whey protein to the formulation of yogurts can enhance satiety, despite processing steps such as thermal treatment and fermentation.

Journal

Food HydrocolloidsElsevier

Published: Nov 1, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off