Design, synthesis, biological evaluation and molecular modeling of novel 2-amino-4-(1-phenylethoxy) pyridine derivatives as potential ROS1 inhibitors

Design, synthesis, biological evaluation and molecular modeling of novel... With the aim of discovering potential and selective inhibitors targeting ROS1 kinase, we rationally designed, synthesized and evaluated two series of novel 2-amino-pyridine derivatives with 1-phenylethoxy at C-3 and C-4 position. The enzymic assays results indicated that six of the new compounds 13b-13d and 14a-14c showed remarkably higher inhibitory activities against ROS1 kinase. The most promising compounds, 13d and 14c displayed the most desired ROS1 inhibitory activity with IC50 values of 440 nM and 370 nM respectively. Furthermore, 13d and 14c displayed ROS1 inhibitory selectivity of about 7-fold and 12-fold, relative to that of ALK sharing about 49% amino acid sequence homology in the kinase domains. They also showed good anti-proliferative effects against ROS1-addicted HCC78 cell lines with the IC50 values of 8.1 μM and 65.3 μM, respectively. Moreover, molecular docking and molecular dynamics simulation studies disclosed that compound 14c and 13d shared similar binding poses with Crizotinib except the selective binding site of ROS1. It also gave a probable molecular explanation for their activity and selectivity, which the methoxyl group in benzene ring was the crucial to the selectivity to ROS1 versus ALK. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Medicinal Chemistry Elsevier

Design, synthesis, biological evaluation and molecular modeling of novel 2-amino-4-(1-phenylethoxy) pyridine derivatives as potential ROS1 inhibitors

Loading next page...
 
/lp/elsevier/design-synthesis-biological-evaluation-and-molecular-modeling-of-novel-bX407d8RqQ
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Masson SAS
ISSN
0223-5234
eISSN
1768-3254
D.O.I.
10.1016/j.ejmech.2017.11.002
Publisher site
See Article on Publisher Site

Abstract

With the aim of discovering potential and selective inhibitors targeting ROS1 kinase, we rationally designed, synthesized and evaluated two series of novel 2-amino-pyridine derivatives with 1-phenylethoxy at C-3 and C-4 position. The enzymic assays results indicated that six of the new compounds 13b-13d and 14a-14c showed remarkably higher inhibitory activities against ROS1 kinase. The most promising compounds, 13d and 14c displayed the most desired ROS1 inhibitory activity with IC50 values of 440 nM and 370 nM respectively. Furthermore, 13d and 14c displayed ROS1 inhibitory selectivity of about 7-fold and 12-fold, relative to that of ALK sharing about 49% amino acid sequence homology in the kinase domains. They also showed good anti-proliferative effects against ROS1-addicted HCC78 cell lines with the IC50 values of 8.1 μM and 65.3 μM, respectively. Moreover, molecular docking and molecular dynamics simulation studies disclosed that compound 14c and 13d shared similar binding poses with Crizotinib except the selective binding site of ROS1. It also gave a probable molecular explanation for their activity and selectivity, which the methoxyl group in benzene ring was the crucial to the selectivity to ROS1 versus ALK.

Journal

European Journal of Medicinal ChemistryElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off