Design, synthesis and biological evaluation of novel 2-aminobenzamides containing dithiocarbamate moiety as histone deacetylase inhibitors and potent antitumor agents

Design, synthesis and biological evaluation of novel 2-aminobenzamides containing dithiocarbamate... A novel series of 2-aminobenzamides with dithiocarbamate as cap group were designed and synthesized as histone deacetylase (HDAC) inhibitors. Most newly synthesized compounds displayed potent antiproliferative activity against diverse human tumor cell lines. The most potent compounds, M101, M122 and M133 exhibited remarkably enhanced anticancer potency against 6 kinds of cancer cell lines with IC50 values of as low as 0.54–2.49 μM compared with CS055 (2.28∼ >26 μM) and MS275 (0.47–6.74 μM). HDAC isoform selectivity assay indicated that M101, M122 and M133 are HDAC1 and HDAC2 selective inhibitors. We also rationalize the high potency and selectivity of compound M122 by molecular docking. Further investigation showed that M101, M122 and M133 could inhibit colony formation of human hepatocellular carcinoma cell line SMMC7721. Furthermore, M101, M122 and M133 remarkably induced apoptosis in SMMC7721 cancer cells. M101 and M133 were found to potently induce SMMC7721 cancer cell cycle arrest at G2/M phase. This study demonstrated that introducing dithiocarbamate as the capping group of 2-aminobenzamide is effective for improving both HDAC inhibitory activity and antitumor activity. The most potent compounds, M101, M122 and M133 could be promising candidates for cancer therapy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Medicinal Chemistry Elsevier

Design, synthesis and biological evaluation of novel 2-aminobenzamides containing dithiocarbamate moiety as histone deacetylase inhibitors and potent antitumor agents

Loading next page...
 
/lp/elsevier/design-synthesis-and-biological-evaluation-of-novel-2-aminobenzamides-OMwT6OYXdJ
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Masson SAS
ISSN
0223-5234
eISSN
1768-3254
D.O.I.
10.1016/j.ejmech.2017.08.041
Publisher site
See Article on Publisher Site

Abstract

A novel series of 2-aminobenzamides with dithiocarbamate as cap group were designed and synthesized as histone deacetylase (HDAC) inhibitors. Most newly synthesized compounds displayed potent antiproliferative activity against diverse human tumor cell lines. The most potent compounds, M101, M122 and M133 exhibited remarkably enhanced anticancer potency against 6 kinds of cancer cell lines with IC50 values of as low as 0.54–2.49 μM compared with CS055 (2.28∼ >26 μM) and MS275 (0.47–6.74 μM). HDAC isoform selectivity assay indicated that M101, M122 and M133 are HDAC1 and HDAC2 selective inhibitors. We also rationalize the high potency and selectivity of compound M122 by molecular docking. Further investigation showed that M101, M122 and M133 could inhibit colony formation of human hepatocellular carcinoma cell line SMMC7721. Furthermore, M101, M122 and M133 remarkably induced apoptosis in SMMC7721 cancer cells. M101 and M133 were found to potently induce SMMC7721 cancer cell cycle arrest at G2/M phase. This study demonstrated that introducing dithiocarbamate as the capping group of 2-aminobenzamide is effective for improving both HDAC inhibitory activity and antitumor activity. The most potent compounds, M101, M122 and M133 could be promising candidates for cancer therapy.

Journal

European Journal of Medicinal ChemistryElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off