Design, synthesis and bioevalucation of novel 2,3-dihydro-1H-inden-1-amine derivatives as potent and selective human monoamine oxidase B inhibitors based on rasagiline

Design, synthesis and bioevalucation of novel 2,3-dihydro-1H-inden-1-amine derivatives as potent... Parkinson's disease (PD) is associated with elevated levels of hMAO-B in the brain, and MAO-B has been recognized a successful target for developing anti-PD drugs. Herein we report rasagiline derivatives as novel potent and selective hMAO-B inhibitors. They were designed by employing fragment-based drug design strategy to link rasagiline and hydrophobic fragments, which may target a hydrophobic pocket in the entrance cavity of hMAO-B. Different linkers such as -OCH2-, -SCH2-, -OCH2CH2-, -OCH2CH2O-, -OCH2CH2CH2O- were tried. A promising selective hMAO-B inhibitor D14 with similar inhibitory activity as rasagiline and improved isoform selectivity was yielded. The selectivity profile of compounds reported herein suggests that we can further develop more potent hMAO-B inhibitors with high isoform selectivity through this strategy. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Medicinal Chemistry Elsevier

Design, synthesis and bioevalucation of novel 2,3-dihydro-1H-inden-1-amine derivatives as potent and selective human monoamine oxidase B inhibitors based on rasagiline

Loading next page...
 
/lp/elsevier/design-synthesis-and-bioevalucation-of-novel-2-3-dihydro-1h-inden-1-FNdKkc4Clr
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Masson SAS
ISSN
0223-5234
eISSN
1768-3254
D.O.I.
10.1016/j.ejmech.2018.01.029
Publisher site
See Article on Publisher Site

Abstract

Parkinson's disease (PD) is associated with elevated levels of hMAO-B in the brain, and MAO-B has been recognized a successful target for developing anti-PD drugs. Herein we report rasagiline derivatives as novel potent and selective hMAO-B inhibitors. They were designed by employing fragment-based drug design strategy to link rasagiline and hydrophobic fragments, which may target a hydrophobic pocket in the entrance cavity of hMAO-B. Different linkers such as -OCH2-, -SCH2-, -OCH2CH2-, -OCH2CH2O-, -OCH2CH2CH2O- were tried. A promising selective hMAO-B inhibitor D14 with similar inhibitory activity as rasagiline and improved isoform selectivity was yielded. The selectivity profile of compounds reported herein suggests that we can further develop more potent hMAO-B inhibitors with high isoform selectivity through this strategy.

Journal

European Journal of Medicinal ChemistryElsevier

Published: Feb 10, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off