Design and synthesis of short amphiphilic cationic peptidomimetics based on biphenyl backbone as antibacterial agents

Design and synthesis of short amphiphilic cationic peptidomimetics based on biphenyl backbone as... Antimicrobial peptides (AMPs) and their synthetic mimics have received recent interest as new alternatives to traditional antibiotics in attempts to overcome the rise of antibiotic resistance in many microbes. AMPs are part of the natural defenses of most living organisms and they also have a unique mechanism of action against bacteria. Herein, a new series of short amphiphilic cationic peptidomimetics were synthesized by incorporating the 3′-amino-[1,1′-biphenyl]-3-carboxylic acid backbone to mimic the essential properties of natural AMPs. By altering hydrophobicity and charge, we identified the most potent analogue 25g that was active against both Gram-positive Staphylococcus aureus (MIC = 15.6 μM) and Gram-negative Escherichia coli (MIC = 7.8 μM) bacteria. Cytoplasmic permeability assay results revealed that 25g acts primarily by depolarization of lipids in cytoplasmic membranes. The active compounds were also investigated for their cytotoxicity to human cells, lysis of lipid bilayers using tethered bilayer lipid membranes (tBLMs) and their activity against established biofilms of S. aureus and E. coli. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png European Journal of Medicinal Chemistry Elsevier

Loading next page...
 
/lp/elsevier/design-and-synthesis-of-short-amphiphilic-cationic-peptidomimetics-sDXp9CZ4RL
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Masson SAS
ISSN
0223-5234
eISSN
1768-3254
D.O.I.
10.1016/j.ejmech.2017.10.066
Publisher site
See Article on Publisher Site

Abstract

Antimicrobial peptides (AMPs) and their synthetic mimics have received recent interest as new alternatives to traditional antibiotics in attempts to overcome the rise of antibiotic resistance in many microbes. AMPs are part of the natural defenses of most living organisms and they also have a unique mechanism of action against bacteria. Herein, a new series of short amphiphilic cationic peptidomimetics were synthesized by incorporating the 3′-amino-[1,1′-biphenyl]-3-carboxylic acid backbone to mimic the essential properties of natural AMPs. By altering hydrophobicity and charge, we identified the most potent analogue 25g that was active against both Gram-positive Staphylococcus aureus (MIC = 15.6 μM) and Gram-negative Escherichia coli (MIC = 7.8 μM) bacteria. Cytoplasmic permeability assay results revealed that 25g acts primarily by depolarization of lipids in cytoplasmic membranes. The active compounds were also investigated for their cytotoxicity to human cells, lysis of lipid bilayers using tethered bilayer lipid membranes (tBLMs) and their activity against established biofilms of S. aureus and E. coli.

Journal

European Journal of Medicinal ChemistryElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off