Delamination migration in multidirectional composite laminates under mode I quasi-static and fatigue loading

Delamination migration in multidirectional composite laminates under mode I quasi-static and... Delamination migration is particularly critical in multi-directional composite laminates and is often observed in different loading scenarios and components. Further understanding on the migration mechanism, especially the similarities and differences in the quasi-static and fatigue delamination migrations, is important for the design of composite structures. In this study, the process of delamination migration under mode I quasi-static and fatigue loadings was experimentally investigated for specimens with a +θ/−θ centreline interface. Specimens, with a specially designed stacking sequence, which allows migration events using a simple Double Cantilever Beam set-up, were tested for θ = 75° and 60°. Delamination migration via intralaminar ply splitting has been observed and this was confirmed by the X-ray computed tomography scan results. All the specimens from both quasi-static and fatigue loadings had a fairly similar sequence of damage events; delamination grows through the −θ and +θ ply block successively until it reaches the 0° ply that prevents further migration. The delamination paths and shape of fracture surfaces were observed to be the same, while the Scanning Electron Microscope fractography results showed that the quasi-static fracture surface was rougher in comparison with that of fatigued specimens. In addition, the distances of migration points from the pre-crack tip were slightly smaller in the fatigue specimens, which may indicate a greater propensity for migration under fatigue loading. This study provides important guidelines to the damage tolerance design of multidirectional composite structures and the verification of advanced numerical modelling technologies. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Delamination migration in multidirectional composite laminates under mode I quasi-static and fatigue loading

Loading next page...
 
/lp/elsevier/delamination-migration-in-multidirectional-composite-laminates-under-0F72UVBHAG
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2018.01.074
Publisher site
See Article on Publisher Site

Abstract

Delamination migration is particularly critical in multi-directional composite laminates and is often observed in different loading scenarios and components. Further understanding on the migration mechanism, especially the similarities and differences in the quasi-static and fatigue delamination migrations, is important for the design of composite structures. In this study, the process of delamination migration under mode I quasi-static and fatigue loadings was experimentally investigated for specimens with a +θ/−θ centreline interface. Specimens, with a specially designed stacking sequence, which allows migration events using a simple Double Cantilever Beam set-up, were tested for θ = 75° and 60°. Delamination migration via intralaminar ply splitting has been observed and this was confirmed by the X-ray computed tomography scan results. All the specimens from both quasi-static and fatigue loadings had a fairly similar sequence of damage events; delamination grows through the −θ and +θ ply block successively until it reaches the 0° ply that prevents further migration. The delamination paths and shape of fracture surfaces were observed to be the same, while the Scanning Electron Microscope fractography results showed that the quasi-static fracture surface was rougher in comparison with that of fatigued specimens. In addition, the distances of migration points from the pre-crack tip were slightly smaller in the fatigue specimens, which may indicate a greater propensity for migration under fatigue loading. This study provides important guidelines to the damage tolerance design of multidirectional composite structures and the verification of advanced numerical modelling technologies.

Journal

Composite StructuresElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off