Deficiency of Atg6 impairs beneficial effect of metformin on intestinal stem cell aging in Drosophila

Deficiency of Atg6 impairs beneficial effect of metformin on intestinal stem cell aging in... Age-related changes of adult stem cell are crucial for tissue aging and age-related diseases. Thus, clarifying mechanisms to prevent adult stem cell aging is indispensable for healthy aging. Metformin, a drug for type 2 diabetes, has been highlighted for its anti-aging and anti-cancer effect. In Drosophila intestinal stem cell (ISC), we previously reported the inhibitory effect of metformin on age-related phenotypes of ISC. Here, we showed that knockdown of Atg6, a crucial autophagy-related factor, in ISC induces age-related phenotypes of ISC such as hyperproliferation, centrosome amplification, and DNA damage accumulation. Then, we revealed that metformin inhibits ISC aging phenotypes in Atg6-dependent manner. Taken together, our study suggests that Atg6 is required for the inhibitory effect of metformin on ISC aging, providing an intervention mechanism of metformin on adult stem cell aging. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Biochemical and Biophysical Research Communications Elsevier

Deficiency of Atg6 impairs beneficial effect of metformin on intestinal stem cell aging in Drosophila

Loading next page...
 
/lp/elsevier/deficiency-of-atg6-impairs-beneficial-effect-of-metformin-on-7kx895QeJ0
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0006-291x
D.O.I.
10.1016/j.bbrc.2018.02.191
Publisher site
See Article on Publisher Site

Abstract

Age-related changes of adult stem cell are crucial for tissue aging and age-related diseases. Thus, clarifying mechanisms to prevent adult stem cell aging is indispensable for healthy aging. Metformin, a drug for type 2 diabetes, has been highlighted for its anti-aging and anti-cancer effect. In Drosophila intestinal stem cell (ISC), we previously reported the inhibitory effect of metformin on age-related phenotypes of ISC. Here, we showed that knockdown of Atg6, a crucial autophagy-related factor, in ISC induces age-related phenotypes of ISC such as hyperproliferation, centrosome amplification, and DNA damage accumulation. Then, we revealed that metformin inhibits ISC aging phenotypes in Atg6-dependent manner. Taken together, our study suggests that Atg6 is required for the inhibitory effect of metformin on ISC aging, providing an intervention mechanism of metformin on adult stem cell aging.

Journal

Biochemical and Biophysical Research CommunicationsElsevier

Published: Mar 25, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off