Decision tree-based data mining and rule induction for identifying hydrogeological parameters that influence groundwater pollution sensitivity

Decision tree-based data mining and rule induction for identifying hydrogeological parameters... This study aims to develop a new field-based approach that can estimate patterns of groundwater pollution sensitivity using data mining algorithms. Hydrogeological and pollution sensitivity data were collected from the Woosan Industrial Complex, Korea, which is a site contaminated by trichloroethylene (TCE). The proposed data mining algorithm procedure uses seven hydrogeological properties as input variables: depth to water, net recharge, aquifer media, soil media, topography, vadose zone media, and hydraulic conductivity. The observed TCE sensitivity was used as the target data. Initially, four data mining algorithms artificial neural network (ANN), decision tree (DT), case-based reasoning (CBR), and multinomial logistic regression (MLR) were tested. We found that the DT-based data mining and rule induction method shows better prediction accuracy and consistency than the other methods. We also used the ordinal pairwise partitioning (OPP) algorithm to improve the accuracy and consistency of the DT model. A classification and regression tree (CART) analysis of the OPP-DT model indicated that the net recharge (R), soil media (S), and aquifer media (A) were the major hydrogeological factors that influence groundwater sensitivity to TCE at the site. The results of this study demonstrate that the proposed model can provide more accurate and consistent estimates of groundwater vulnerability to TCE compared to the existing models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Decision tree-based data mining and rule induction for identifying hydrogeological parameters that influence groundwater pollution sensitivity

Loading next page...
 
/lp/elsevier/decision-tree-based-data-mining-and-rule-induction-for-identifying-BocPI3uQLF
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2016.01.075
Publisher site
See Article on Publisher Site

Abstract

This study aims to develop a new field-based approach that can estimate patterns of groundwater pollution sensitivity using data mining algorithms. Hydrogeological and pollution sensitivity data were collected from the Woosan Industrial Complex, Korea, which is a site contaminated by trichloroethylene (TCE). The proposed data mining algorithm procedure uses seven hydrogeological properties as input variables: depth to water, net recharge, aquifer media, soil media, topography, vadose zone media, and hydraulic conductivity. The observed TCE sensitivity was used as the target data. Initially, four data mining algorithms artificial neural network (ANN), decision tree (DT), case-based reasoning (CBR), and multinomial logistic regression (MLR) were tested. We found that the DT-based data mining and rule induction method shows better prediction accuracy and consistency than the other methods. We also used the ordinal pairwise partitioning (OPP) algorithm to improve the accuracy and consistency of the DT model. A classification and regression tree (CART) analysis of the OPP-DT model indicated that the net recharge (R), soil media (S), and aquifer media (A) were the major hydrogeological factors that influence groundwater sensitivity to TCE at the site. The results of this study demonstrate that the proposed model can provide more accurate and consistent estimates of groundwater vulnerability to TCE compared to the existing models.

Journal

Journal of Cleaner ProductionElsevier

Published: May 20, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial