Current approaches to modelling the environmental niche of eucalypts: implication for management of forest biodiversity

Current approaches to modelling the environmental niche of eucalypts: implication for management... Robust predictive models of the distribution of forest biota are important tools for the management of forest biodiversity. To build robust models, it is essential to understand the environmental processes which control species distribution and hence choose appropriate predictor variables. Requirements for modelling the environmental niche of plant species include: environmentally stratified survey data of the vegetation and associated environmental measurements, an understanding of ecological theory, robust statistical models and geographical representation of the models. These requirements can be satisfied in different ways, many of which are discussed. The choice of modelling technique and curve fitting function should be related to ecological theory. Prediction becomes increasingly robust and less location-specific as the predictor variables become more process-oriented and relevant to biological processes. However, the need to use predictors for which estimates are available for unsampled regions may limit the choice to less direct variables. In this context we examine the performance of two modelling techniques: Generalised Linear Modelling (GLM) and Generalised Additive Modelling (GAM). Trees are ideal to study, because their size and immobility make for ease of collecting data and they provide important habitat for fauna and understorey herbs and as such are useful for predicting the distribution of some other biota. The data set includes 8377 sites in south-eastern Australia, with presence/absence data for trees and seven environmental predictors. A detailed comparison is described for Eucalyptus cypellocarpa . The influence of ‘naughty noughts’, or zero values beyond the range of a species, can distor the response function, giving positive predictions where the species is known to be absent. The model is improved by restricting the data to a suitable range. GAM has advantages over GLM due to the flexible nature of the non-parametric smoothing function. Different response curves can produce divergent predictions of species occurrence, particularly at the limits of species distribution. Conservation evaluation often requires making predictions in unsampled areas, and so the assumption of particular shapes of response curve could lead to significant errors in the estimation of the conservation value of these areas. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Forest Ecology and Management Elsevier

Current approaches to modelling the environmental niche of eucalypts: implication for management of forest biodiversity

Forest Ecology and Management, Volume 85 (1) – Sep 1, 1996

Loading next page...
 
/lp/elsevier/current-approaches-to-modelling-the-environmental-niche-of-eucalypts-Lz58fMP9fg
Publisher
Elsevier
Copyright
Copyright © 1996 Elsevier Science B.V. All rights reserved.
ISSN
0378-1127
eISSN
1872-7042
DOI
10.1016/S0378-1127(96)03753-X
Publisher site
See Article on Publisher Site

Abstract

Robust predictive models of the distribution of forest biota are important tools for the management of forest biodiversity. To build robust models, it is essential to understand the environmental processes which control species distribution and hence choose appropriate predictor variables. Requirements for modelling the environmental niche of plant species include: environmentally stratified survey data of the vegetation and associated environmental measurements, an understanding of ecological theory, robust statistical models and geographical representation of the models. These requirements can be satisfied in different ways, many of which are discussed. The choice of modelling technique and curve fitting function should be related to ecological theory. Prediction becomes increasingly robust and less location-specific as the predictor variables become more process-oriented and relevant to biological processes. However, the need to use predictors for which estimates are available for unsampled regions may limit the choice to less direct variables. In this context we examine the performance of two modelling techniques: Generalised Linear Modelling (GLM) and Generalised Additive Modelling (GAM). Trees are ideal to study, because their size and immobility make for ease of collecting data and they provide important habitat for fauna and understorey herbs and as such are useful for predicting the distribution of some other biota. The data set includes 8377 sites in south-eastern Australia, with presence/absence data for trees and seven environmental predictors. A detailed comparison is described for Eucalyptus cypellocarpa . The influence of ‘naughty noughts’, or zero values beyond the range of a species, can distor the response function, giving positive predictions where the species is known to be absent. The model is improved by restricting the data to a suitable range. GAM has advantages over GLM due to the flexible nature of the non-parametric smoothing function. Different response curves can produce divergent predictions of species occurrence, particularly at the limits of species distribution. Conservation evaluation often requires making predictions in unsampled areas, and so the assumption of particular shapes of response curve could lead to significant errors in the estimation of the conservation value of these areas.

Journal

Forest Ecology and ManagementElsevier

Published: Sep 1, 1996

References

  • Current problems of environmental gradients and species response curves in relation to continuum theory
    Austin, M.P.; Gaywood, M.J.
  • Forest pattern, climate and vulcanism in central North Island, New Zealand
    Leathwick, J.R.; Mitchell, N.D.
  • Diversity of Eucalyptus species predicted by a multi variables environmental gradient
    Margules, C.R.; Nicholls, A.O.; Austin, M.P.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off