Cumulative energy demand and environmental impact in sustainable machining of inconel superalloy

Cumulative energy demand and environmental impact in sustainable machining of inconel superalloy Compared to flood machining, dry machining has sustainable potentials by eliminating the consumption of pump energy and coolant in production. However, the consumption of tool material with high embodied energy is significant in dry machining due to fast tool wear. Nevertheless, the trade-off on cumulative energy demand is not understood yet when considering the usage of materials, energy, and fluids. This study provides an innovative system-level modeling approach to assess the cumulative energy demand and environmental impact in machining of Inconel 718 as a function of energy consumption of machine tool and embodied energy consumption of work material, cutting tool, and coolant. The machine specific energy has been measured in dry and flood milling of Inconel 718. The relationship between specific cumulative energy demands and MRR has been investigated. The threshold MRR to differentiate cumulative energy demand of dry milling and flood milling has been determined. Dry milling has a smaller optimal process window for minimum cumulative energy demand than flood milling. The influence of embodied energy due to material consumption on machining sustainability is significant. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Cumulative energy demand and environmental impact in sustainable machining of inconel superalloy

Loading next page...
 
/lp/elsevier/cumulative-energy-demand-and-environmental-impact-in-sustainable-7r0E5Twyah
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.01.251
Publisher site
See Article on Publisher Site

Abstract

Compared to flood machining, dry machining has sustainable potentials by eliminating the consumption of pump energy and coolant in production. However, the consumption of tool material with high embodied energy is significant in dry machining due to fast tool wear. Nevertheless, the trade-off on cumulative energy demand is not understood yet when considering the usage of materials, energy, and fluids. This study provides an innovative system-level modeling approach to assess the cumulative energy demand and environmental impact in machining of Inconel 718 as a function of energy consumption of machine tool and embodied energy consumption of work material, cutting tool, and coolant. The machine specific energy has been measured in dry and flood milling of Inconel 718. The relationship between specific cumulative energy demands and MRR has been investigated. The threshold MRR to differentiate cumulative energy demand of dry milling and flood milling has been determined. Dry milling has a smaller optimal process window for minimum cumulative energy demand than flood milling. The influence of embodied energy due to material consumption on machining sustainability is significant.

Journal

Journal of Cleaner ProductionElsevier

Published: Apr 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off