Cubic Membrane Structure in Amoeba ( Chaos carolinensis ) Mitochondria Determined by Electron Microscopic Tomography

Cubic Membrane Structure in Amoeba ( Chaos carolinensis ) Mitochondria Determined by Electron... Cubic membranes occur in a variety of membrane-bound organelles in many cell types. By transmission electron microscopy (TEM) these membrane systems appear to consist of highly curved periodic surfaces that fit mathematical models analogous to those used to describe lipidic cubic phases. For the first time, a naturally occurring cubic membrane system has been reconstructed in three dimensions by electron microscopic tomography, and its periodicity directly characterized. Double-tilt tomographic reconstruction of mitochondria in the amoeba, Chaos carolinensis, confirms that their cristae (inner membrane infoldings) have the cubic structure suggested by modeling studies based on thin-section TEM images. Analysis of the membrane surfaces in the reconstruction reveals the connectivity of the internal compartments within the mitochondria. In the cubic regions, the matrix is highly condensed and confined to a continuous, small space between adjacent cristal membranes. The cristae form large, undulating cisternae that communicate with the peripheral (inner membrane) compartment through narrow tubular segments as seen in other types of mitochondria. The cubic periodicity of these mitochondrial membranes provides an ideal specimen for measuring geometrical distortions in biological electron tomography. It may also prove to be a useful model system for studies of the correlation of cristae–matrix organization with mitochondrial activity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Structural Biology Elsevier

Cubic Membrane Structure in Amoeba ( Chaos carolinensis ) Mitochondria Determined by Electron Microscopic Tomography

Loading next page...
 
/lp/elsevier/cubic-membrane-structure-in-amoeba-chaos-carolinensis-mitochondria-ahjKWFF4Rp
Publisher
Elsevier
Copyright
Copyright © 1999 Academic Press
ISSN
1047-8477
eISSN
1095-8657
DOI
10.1006/jsbi.1999.4147
Publisher site
See Article on Publisher Site

Abstract

Cubic membranes occur in a variety of membrane-bound organelles in many cell types. By transmission electron microscopy (TEM) these membrane systems appear to consist of highly curved periodic surfaces that fit mathematical models analogous to those used to describe lipidic cubic phases. For the first time, a naturally occurring cubic membrane system has been reconstructed in three dimensions by electron microscopic tomography, and its periodicity directly characterized. Double-tilt tomographic reconstruction of mitochondria in the amoeba, Chaos carolinensis, confirms that their cristae (inner membrane infoldings) have the cubic structure suggested by modeling studies based on thin-section TEM images. Analysis of the membrane surfaces in the reconstruction reveals the connectivity of the internal compartments within the mitochondria. In the cubic regions, the matrix is highly condensed and confined to a continuous, small space between adjacent cristal membranes. The cristae form large, undulating cisternae that communicate with the peripheral (inner membrane) compartment through narrow tubular segments as seen in other types of mitochondria. The cubic periodicity of these mitochondrial membranes provides an ideal specimen for measuring geometrical distortions in biological electron tomography. It may also prove to be a useful model system for studies of the correlation of cristae–matrix organization with mitochondrial activity.

Journal

Journal of Structural BiologyElsevier

Published: Oct 1, 1999

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off