Critical bounds on noise and SNR for robust estimation of real-time brain activity from functional near infra-red spectroscopy

Critical bounds on noise and SNR for robust estimation of real-time brain activity from... The robust characterization of real-time brain activity carries potential for many applications. However, the contamination of measured signals by various instrumental, environmental, and physiological sources of noise introduces a substantial amount of signal variance and, consequently, challenges real-time estimation of contributions from underlying neuronal sources. Functional near infra-red spectroscopy (fNIRS) is an emerging imaging modality whose real-time potential is yet to be fully explored. The objectives of the current study are to (i) validate a time-dependent linear model of hemodynamic responses in fNIRS, and (ii) test the robustness of this approach against measurement noise (instrumental and physiological) and mis-specification of the hemodynamic response basis functions (amplitude, latency, and duration). We propose a linear hemodynamic model with time-varying parameters, which are estimated (adapted and tracked) using a dynamic recursive least square algorithm. Owing to the linear nature of the activation model, the problem of achieving robust convergence to an accurate estimation of the model parameters is recast as a problem of parameter error stability around the origin. We show that robust convergence of the proposed method is guaranteed in the presence of an acceptable degree of model misspecification and we derive an upper bound on noise under which reliable parameters can still be inferred. We also derived a lower bound on signal-to-noise-ratio over which the reliable parameters can still be inferred from a channel/voxel. Whilst here applied to fNIRS, the proposed methodology is applicable to other hemodynamic-based imaging technologies such as functional magnetic resonance imaging. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroimage Elsevier

Critical bounds on noise and SNR for robust estimation of real-time brain activity from functional near infra-red spectroscopy

Loading next page...
 
/lp/elsevier/critical-bounds-on-noise-and-snr-for-robust-estimation-of-real-time-MteBIXm48U
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
1053-8119
eISSN
1095-9572
D.O.I.
10.1016/j.neuroimage.2018.04.042
Publisher site
See Article on Publisher Site

Abstract

The robust characterization of real-time brain activity carries potential for many applications. However, the contamination of measured signals by various instrumental, environmental, and physiological sources of noise introduces a substantial amount of signal variance and, consequently, challenges real-time estimation of contributions from underlying neuronal sources. Functional near infra-red spectroscopy (fNIRS) is an emerging imaging modality whose real-time potential is yet to be fully explored. The objectives of the current study are to (i) validate a time-dependent linear model of hemodynamic responses in fNIRS, and (ii) test the robustness of this approach against measurement noise (instrumental and physiological) and mis-specification of the hemodynamic response basis functions (amplitude, latency, and duration). We propose a linear hemodynamic model with time-varying parameters, which are estimated (adapted and tracked) using a dynamic recursive least square algorithm. Owing to the linear nature of the activation model, the problem of achieving robust convergence to an accurate estimation of the model parameters is recast as a problem of parameter error stability around the origin. We show that robust convergence of the proposed method is guaranteed in the presence of an acceptable degree of model misspecification and we derive an upper bound on noise under which reliable parameters can still be inferred. We also derived a lower bound on signal-to-noise-ratio over which the reliable parameters can still be inferred from a channel/voxel. Whilst here applied to fNIRS, the proposed methodology is applicable to other hemodynamic-based imaging technologies such as functional magnetic resonance imaging.

Journal

NeuroimageElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off