Cost-utility analysis of fracture risk assessment using microRNAs compared with standard tools and no monitoring in the Austrian female population

Cost-utility analysis of fracture risk assessment using microRNAs compared with standard tools... BackgroundOsteoporosis poses an immense burden to the society in terms of morbidity, mortality and financial cost. To reduce this burden, it is essential to accurately assess the individual patient's fracture risk and, where indicated, to initiate appropriate treatment that reduces fracture probability. Current screening and monitoring approaches include utilization of FRAX®, a web-based country-specific fracture risk assessment tool, and bone mineral density measurement by Dual Energy X-ray Absorptiometry (DXA). Recently, microRNAs have been recognized as important regulators of bone physiology and potential biomarkers for fracture risk assessment and monitoring. A fracture risk assessment tool based on microRNAs (osteomiR™ test) is currently being developed. The aim of this study was to estimate the cost-effectiveness of fracture risk screening, monitoring, and resulting treatment decisions for the Austrian female population using the osteomiR™ test compared with DXA, with FRAX®, or with no screening/monitoring. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bone Elsevier

Cost-utility analysis of fracture risk assessment using microRNAs compared with standard tools and no monitoring in the Austrian female population

Loading next page...
 
/lp/elsevier/cost-utility-analysis-of-fracture-risk-assessment-using-micrornas-0L0FjRIi4r
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
8756-3282
D.O.I.
10.1016/j.bone.2017.12.017
Publisher site
See Article on Publisher Site

Abstract

BackgroundOsteoporosis poses an immense burden to the society in terms of morbidity, mortality and financial cost. To reduce this burden, it is essential to accurately assess the individual patient's fracture risk and, where indicated, to initiate appropriate treatment that reduces fracture probability. Current screening and monitoring approaches include utilization of FRAX®, a web-based country-specific fracture risk assessment tool, and bone mineral density measurement by Dual Energy X-ray Absorptiometry (DXA). Recently, microRNAs have been recognized as important regulators of bone physiology and potential biomarkers for fracture risk assessment and monitoring. A fracture risk assessment tool based on microRNAs (osteomiR™ test) is currently being developed. The aim of this study was to estimate the cost-effectiveness of fracture risk screening, monitoring, and resulting treatment decisions for the Austrian female population using the osteomiR™ test compared with DXA, with FRAX®, or with no screening/monitoring.

Journal

BoneElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off