Corticosteroid receptors in the brain: gene targeting studies

Corticosteroid receptors in the brain: gene targeting studies Corticosteroids are released by the adrenal cortex with a diurnal rhythm and in response to stressful environmental changes. They not only act on peripheral organs, but also regulate brain physiology, thereby affecting mental processes like emotion and cognition. Here, we discuss the role of the two known corticosteroid receptors—glucocorticoid receptor (GR) and mineralocorticoid receptor (MR)—in the brain by summarizing the results obtained with various genetically modified mouse lines. In these lines, either the GR or the MR gene has been targeted or GR protein levels have been upregulated or downregulated. Analysis of the different lines confirms the importance of GR in the regulation of the hypothalamic pituitary adrenal (HPA) axis because interference with GR activity activates the HPA axis, whereas increased GR protein levels inhibit HPA axis activity. Genetic downregulation of GR protein levels and inactivation of the GR gene in the brain reduce anxiety-related behavior, which reveals a central role of GR in emotional behavior. Both HPA axis activity and anxiety are modulated by corticotropin releasing hormone (CRH); therefore, we include in the discussion results obtained with genetically modified CRH or CRH receptor mice. We further address the important role of corticosteroid receptors for hippocampal function and integrity. Cellular properties of CA1 neurons are changed, and hippocampal-dependent explicit memory is affected in GR mutant animals. Comparing MR and GR mutant animals suggests the requirement of MR but not GR for dentate gyrus granule cell maintenance. Because an imbalance in glucocorticoid levels is associated with cognitive impairments and mental disorders, the described mouse lines will aid in understanding the mechanisms involved in the pathology of these disorders. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Brain Research Bulletin Elsevier

Corticosteroid receptors in the brain: gene targeting studies

Loading next page...
 
/lp/elsevier/corticosteroid-receptors-in-the-brain-gene-targeting-studies-K058UrO0Vc
Publisher
Elsevier
Copyright
Copyright © 2002 Elsevier Science Inc.
ISSN
0361-9230
eISSN
1873-2747
DOI
10.1016/S0361-9230(01)00638-4
Publisher site
See Article on Publisher Site

Abstract

Corticosteroids are released by the adrenal cortex with a diurnal rhythm and in response to stressful environmental changes. They not only act on peripheral organs, but also regulate brain physiology, thereby affecting mental processes like emotion and cognition. Here, we discuss the role of the two known corticosteroid receptors—glucocorticoid receptor (GR) and mineralocorticoid receptor (MR)—in the brain by summarizing the results obtained with various genetically modified mouse lines. In these lines, either the GR or the MR gene has been targeted or GR protein levels have been upregulated or downregulated. Analysis of the different lines confirms the importance of GR in the regulation of the hypothalamic pituitary adrenal (HPA) axis because interference with GR activity activates the HPA axis, whereas increased GR protein levels inhibit HPA axis activity. Genetic downregulation of GR protein levels and inactivation of the GR gene in the brain reduce anxiety-related behavior, which reveals a central role of GR in emotional behavior. Both HPA axis activity and anxiety are modulated by corticotropin releasing hormone (CRH); therefore, we include in the discussion results obtained with genetically modified CRH or CRH receptor mice. We further address the important role of corticosteroid receptors for hippocampal function and integrity. Cellular properties of CA1 neurons are changed, and hippocampal-dependent explicit memory is affected in GR mutant animals. Comparing MR and GR mutant animals suggests the requirement of MR but not GR for dentate gyrus granule cell maintenance. Because an imbalance in glucocorticoid levels is associated with cognitive impairments and mental disorders, the described mouse lines will aid in understanding the mechanisms involved in the pathology of these disorders.

Journal

Brain Research BulletinElsevier

Published: Jan 1, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off