Correlation between bulk characteristics of aggregated β-lactoglobulin and its surface and foaming properties

Correlation between bulk characteristics of aggregated β-lactoglobulin and its surface and... Bovine β-lactoglobulin features a pronounced surface activity, and therefore, is widely applied in order to provide stability to food-related aerated systems. Due to its distinct tertiary and quaternary structure, it can be used both in native state as well as in the form of thermally aggregated particles. In this context, heat treatment (80 °C/90 min) of highly purified solutions of β-lactoglobulin (c = 10.0 g L−1) under variation of solution pH (6.8 or 8.0) and NaCl concentration (0–130 mM) resulted in the formation of soluble aggregates, whose median particle diameters ranged from about 2.5 nm to 1.1 μm. These differences in particle size in combination with differences in particle characteristics (e.g. surface hydrophobicity, zeta potential) had a significant impact on surface properties, i.e. surface tension, dynamics of protein adsorption and interfacial dilatational properties. Thereby, diffusion rates decreased with increasing median particle diameter. Initial protein adsorption was majorly influenced by surface hydrophobicity. However, reverse observations emerged in terms of foam characteristics. Foam stability clearly increased with increasing aggregate size, showing maxima for the largest particles examined. The increasing foam stabilization ability was also reflected in time-resolved bubble properties, e.g. lower mean bubble areas as well as higher bubble counts for larger aggregates. This observation was traced back to the increasing surface hydrophobicity as well as more negative zeta potential of the aggregates with increasing particle diameter. As a result, sterically stabilized and more impermeable surface films in combination with electrostatic repulsive forces led to a reduction in coalescence rate as indicated by a lower coarsening exponent, and thus, a decrease of foam decay. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Food Hydrocolloids Elsevier

Correlation between bulk characteristics of aggregated β-lactoglobulin and its surface and foaming properties

Loading next page...
 
/lp/elsevier/correlation-between-bulk-characteristics-of-aggregated-lactoglobulin-xvnwXfz6jw
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0268-005X
eISSN
1873-7137
D.O.I.
10.1016/j.foodhyd.2016.05.027
Publisher site
See Article on Publisher Site

Abstract

Bovine β-lactoglobulin features a pronounced surface activity, and therefore, is widely applied in order to provide stability to food-related aerated systems. Due to its distinct tertiary and quaternary structure, it can be used both in native state as well as in the form of thermally aggregated particles. In this context, heat treatment (80 °C/90 min) of highly purified solutions of β-lactoglobulin (c = 10.0 g L−1) under variation of solution pH (6.8 or 8.0) and NaCl concentration (0–130 mM) resulted in the formation of soluble aggregates, whose median particle diameters ranged from about 2.5 nm to 1.1 μm. These differences in particle size in combination with differences in particle characteristics (e.g. surface hydrophobicity, zeta potential) had a significant impact on surface properties, i.e. surface tension, dynamics of protein adsorption and interfacial dilatational properties. Thereby, diffusion rates decreased with increasing median particle diameter. Initial protein adsorption was majorly influenced by surface hydrophobicity. However, reverse observations emerged in terms of foam characteristics. Foam stability clearly increased with increasing aggregate size, showing maxima for the largest particles examined. The increasing foam stabilization ability was also reflected in time-resolved bubble properties, e.g. lower mean bubble areas as well as higher bubble counts for larger aggregates. This observation was traced back to the increasing surface hydrophobicity as well as more negative zeta potential of the aggregates with increasing particle diameter. As a result, sterically stabilized and more impermeable surface films in combination with electrostatic repulsive forces led to a reduction in coalescence rate as indicated by a lower coarsening exponent, and thus, a decrease of foam decay.

Journal

Food HydrocolloidsElsevier

Published: Dec 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial