Coordinated d-cyclin/Foxd1 activation drives mitogenic activity of the Sonic Hedgehog signaling pathway

Coordinated d-cyclin/Foxd1 activation drives mitogenic activity of the Sonic Hedgehog signaling... Sonic Hedgehog (Shh) signaling plays key regulatory roles in embryonic development and postnatal homeostasis and repair. Modulation of the Shh pathway is known to cause malformations and malignancies associated with dysregulated tissue growth. However, our understanding of the molecular mechanisms by which Shh regulates cellular proliferation is incomplete. Here, using mouse embryonic fibroblasts, we demonstrate that the Forkhead box gene Foxd1 is transcriptionally regulated by canonical Shh signaling and required for downstream proliferative activity. We show that Foxd1 deletion abrogates the proliferative response to SHH ligand while FOXD1 overexpression alone is sufficient to induce cellular proliferation. The proliferative response to both SHH ligand and FOXD1 overexpression was blocked by pharmacologic inhibition of cyclin-dependent kinase signaling. Time-course experiments revealed that Shh pathway activation of Foxd1 is followed by downregulation of Cdkn1c, which encodes a cyclin-dependent kinase inhibitor. Consistent with a direct transcriptional regulation mechanism, we found that FOXD1 reduces reporter activity of a Fox enhancer sequence in the second intron of Cdkn1c. Supporting the applicability of these findings to specific biological contexts, we show that Shh regulation of Foxd1 and Cdkn1c is recapitulated in cranial neural crest cells and provide evidence that this mechanism is operational during upper lip morphogenesis. These results reveal a novel Shh-Foxd1-Cdkn1c regulatory circuit that drives the mitogenic action of Shh signaling and may have broad implications in development and disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cellular Signalling Elsevier

Coordinated d-cyclin/Foxd1 activation drives mitogenic activity of the Sonic Hedgehog signaling pathway

Loading next page...
 
/lp/elsevier/coordinated-d-cyclin-foxd1-activation-drives-mitogenic-activity-of-the-0rJ9NfzDbX
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Inc.
ISSN
0898-6568
eISSN
1873-3913
D.O.I.
10.1016/j.cellsig.2017.12.007
Publisher site
See Article on Publisher Site

Abstract

Sonic Hedgehog (Shh) signaling plays key regulatory roles in embryonic development and postnatal homeostasis and repair. Modulation of the Shh pathway is known to cause malformations and malignancies associated with dysregulated tissue growth. However, our understanding of the molecular mechanisms by which Shh regulates cellular proliferation is incomplete. Here, using mouse embryonic fibroblasts, we demonstrate that the Forkhead box gene Foxd1 is transcriptionally regulated by canonical Shh signaling and required for downstream proliferative activity. We show that Foxd1 deletion abrogates the proliferative response to SHH ligand while FOXD1 overexpression alone is sufficient to induce cellular proliferation. The proliferative response to both SHH ligand and FOXD1 overexpression was blocked by pharmacologic inhibition of cyclin-dependent kinase signaling. Time-course experiments revealed that Shh pathway activation of Foxd1 is followed by downregulation of Cdkn1c, which encodes a cyclin-dependent kinase inhibitor. Consistent with a direct transcriptional regulation mechanism, we found that FOXD1 reduces reporter activity of a Fox enhancer sequence in the second intron of Cdkn1c. Supporting the applicability of these findings to specific biological contexts, we show that Shh regulation of Foxd1 and Cdkn1c is recapitulated in cranial neural crest cells and provide evidence that this mechanism is operational during upper lip morphogenesis. These results reveal a novel Shh-Foxd1-Cdkn1c regulatory circuit that drives the mitogenic action of Shh signaling and may have broad implications in development and disease.

Journal

Cellular SignallingElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off