Continental growth through accreted oceanic arc: Zircon Hf–O isotope evidence for granitoids from the Qinling orogen

Continental growth through accreted oceanic arc: Zircon Hf–O isotope evidence for granitoids... The continental crust is commonly viewed as being formed in subduction zones, but there is no consensus on the relative roles of oceanic or continental arcs in the formation of the continental crust. The main difficulties of the oceanic arc model are how the oceanic arcs can be preserved from being subducted, how we can trace the former oceanic arcs through their high-Si products, and how the oceanic arcs can generate the high-Si, K-rich granitoid composition similar to the upper continental crust. The eastern Qinling orogen provides an optimal place to address these issues as it preserves the well-exposed Erlangping oceanic arc with large amounts of granitoids. In this study, we present an integrated investigation of zircon U–Pb ages and Hf–O isotopes for four representative granitoid plutons in the Erlangping unit. In situ zircon SIMS U–Pb dating indicated that the Zhangjiadazhuang, Xizhuanghe, and Taoyuan plutons formed at 472±7, 458±6 and 443±5Ma, respectively, all of which postdated the deep subduction of the Qinling microcontinent under the Erlangping oceanic arc. The Zhangjiadazhuang, Xizhuanghe, and Taoyuan plutons are sodic granitoid and have highly positive εHf(t) (+7.6 to +12.9) and relatively low δ18O (4.7–5.0‰) values, which were suggested to result from prompt remelting of hydrothermally altered lower oceanic crust of the accreted Erlangping oceanic arc. The zircon grains from the Manziying monzogranitic pluton show similar Hf–O isotopic compositions to those of the Xizhuanghe pluton, and thus the Manziying monzogranitic pluton was likely derived from the dehydration melting of previous tonalites as exemplified by the Xizhuanghe pluton. The deep subduction of Qinling microcontinent resulted in the accretion of the Erlangping oceanic arc, which implies that arc–continent collision provides an effective way for preventing oceanic arcs from being completely subducted. The highly positive εHf(t) and relatively low δ18O values of zircon grains from the granitoids in the Erlangping unit reveal that the continental crust can acquire its high-Si, K-rich nature from accreted oceanic arcs through differentiation by post-accretional magmatism, and thus highlight the significance of oceanic arcs for the generation of continental crust. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geochimica et Cosmochimica Acta Elsevier

Continental growth through accreted oceanic arc: Zircon Hf–O isotope evidence for granitoids from the Qinling orogen

Loading next page...
 
/lp/elsevier/continental-growth-through-accreted-oceanic-arc-zircon-hf-o-isotope-KzFxagRwWC
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0016-7037
eISSN
1872-9533
D.O.I.
10.1016/j.gca.2016.03.016
Publisher site
See Article on Publisher Site

Abstract

The continental crust is commonly viewed as being formed in subduction zones, but there is no consensus on the relative roles of oceanic or continental arcs in the formation of the continental crust. The main difficulties of the oceanic arc model are how the oceanic arcs can be preserved from being subducted, how we can trace the former oceanic arcs through their high-Si products, and how the oceanic arcs can generate the high-Si, K-rich granitoid composition similar to the upper continental crust. The eastern Qinling orogen provides an optimal place to address these issues as it preserves the well-exposed Erlangping oceanic arc with large amounts of granitoids. In this study, we present an integrated investigation of zircon U–Pb ages and Hf–O isotopes for four representative granitoid plutons in the Erlangping unit. In situ zircon SIMS U–Pb dating indicated that the Zhangjiadazhuang, Xizhuanghe, and Taoyuan plutons formed at 472±7, 458±6 and 443±5Ma, respectively, all of which postdated the deep subduction of the Qinling microcontinent under the Erlangping oceanic arc. The Zhangjiadazhuang, Xizhuanghe, and Taoyuan plutons are sodic granitoid and have highly positive εHf(t) (+7.6 to +12.9) and relatively low δ18O (4.7–5.0‰) values, which were suggested to result from prompt remelting of hydrothermally altered lower oceanic crust of the accreted Erlangping oceanic arc. The zircon grains from the Manziying monzogranitic pluton show similar Hf–O isotopic compositions to those of the Xizhuanghe pluton, and thus the Manziying monzogranitic pluton was likely derived from the dehydration melting of previous tonalites as exemplified by the Xizhuanghe pluton. The deep subduction of Qinling microcontinent resulted in the accretion of the Erlangping oceanic arc, which implies that arc–continent collision provides an effective way for preventing oceanic arcs from being completely subducted. The highly positive εHf(t) and relatively low δ18O values of zircon grains from the granitoids in the Erlangping unit reveal that the continental crust can acquire its high-Si, K-rich nature from accreted oceanic arcs through differentiation by post-accretional magmatism, and thus highlight the significance of oceanic arcs for the generation of continental crust.

Journal

Geochimica et Cosmochimica ActaElsevier

Published: Jun 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off