Contact stresses in adhesive joints due to differential thermal expansion with the adherends

Contact stresses in adhesive joints due to differential thermal expansion with the adherends The contact stresses in a bonded joint due to differential thermal expansions are calculated by considering the adhesive as an elastic rectangle confined by plates representing the adherends. The interface is cohesive in type, so that the contact area is a perfectly adherent region surrounded by cohesive areas where slip occurs at constant shear-stress. The problem is formulated in terms of Papkovich–Fadle eigenfunctions, which satisfy the boundary conditions on the stress free edges. The resulting integral equations are solved with the Jacobi integration formula. The size of the cohesive zone, which is determined by imposing the finiteness of the contact stresses at the frontier with the bonded region, depends upon the length and height of the joint. In very long joints the result tends to the technical rule of thumb traditionally employed to design such joints, but for intermediate lengths the elastic solution is quite different. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Solids and Structures Elsevier

Contact stresses in adhesive joints due to differential thermal expansion with the adherends

Loading next page...
 
/lp/elsevier/contact-stresses-in-adhesive-joints-due-to-differential-thermal-DXM7ow0MQA
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0020-7683
eISSN
1879-2146
D.O.I.
10.1016/j.ijsolstr.2016.02.036
Publisher site
See Article on Publisher Site

Abstract

The contact stresses in a bonded joint due to differential thermal expansions are calculated by considering the adhesive as an elastic rectangle confined by plates representing the adherends. The interface is cohesive in type, so that the contact area is a perfectly adherent region surrounded by cohesive areas where slip occurs at constant shear-stress. The problem is formulated in terms of Papkovich–Fadle eigenfunctions, which satisfy the boundary conditions on the stress free edges. The resulting integral equations are solved with the Jacobi integration formula. The size of the cohesive zone, which is determined by imposing the finiteness of the contact stresses at the frontier with the bonded region, depends upon the length and height of the joint. In very long joints the result tends to the technical rule of thumb traditionally employed to design such joints, but for intermediate lengths the elastic solution is quite different.

Journal

International Journal of Solids and StructuresElsevier

Published: Jun 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off