Considering factors affecting the connectome-based identification process: Comment on Waller et al.

Considering factors affecting the connectome-based identification process: Comment on Waller et al. A recent study by Waller and colleagues evaluated the reliability, specificity, and generalizability of using functional connectivity data to identify individuals from a group. The authors note they were able to replicate identification rates in a larger version of the original Human Connectome Project (HCP) dataset. However, they also report lower identification accuracies when using historical neuroimaging acquisitions with low spatial and temporal resolution. The authors suggest that their results indicate connectomes derived from historical imaging data may be similar across individuals, to the extent that this connectome-based approach may be inappropriate for precision psychiatry and the goal of drawing inferences based on subject-level data. Here we note that the authors did not take into account factors affecting data quality and hence identification rates, independent of whether a low spatiotemporal resolution acquisition or a high spatiotemporal resolution acquisition is used. Specifically, we show here that the amount of data collected per subject and in-scanner motion are the predominant factors influencing identification rates, not the spatiotemporal resolution of the acquisition. To do this, we investigated identification rates in the HCP dataset as a function of the amount of data and motion. Using a dataset from the Consortium for Reliability and Reproducibility (CoRR), we investigated the impact of multiband versus non-multiband imaging parameters; that is, high spatiotemporal resolution versus low spatiotemporal resolution acquisitions. We show scan length and motion affect identification, whereas the imaging protocol does not affect these rates. Our results suggest that motion and amount of data per subject are the primary factors impacting individual connectivity profiles, but that within these constraints, individual differences in the connectome are readily observable. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuroimage Elsevier

Considering factors affecting the connectome-based identification process: Comment on Waller et al.

Loading next page...
 
/lp/elsevier/considering-factors-affecting-the-connectome-based-identification-NZQIYcJJMs
Publisher
Elsevier
Copyright
Copyright © 2017 The Authors
ISSN
1053-8119
eISSN
1095-9572
D.O.I.
10.1016/j.neuroimage.2017.12.045
Publisher site
See Article on Publisher Site

Abstract

A recent study by Waller and colleagues evaluated the reliability, specificity, and generalizability of using functional connectivity data to identify individuals from a group. The authors note they were able to replicate identification rates in a larger version of the original Human Connectome Project (HCP) dataset. However, they also report lower identification accuracies when using historical neuroimaging acquisitions with low spatial and temporal resolution. The authors suggest that their results indicate connectomes derived from historical imaging data may be similar across individuals, to the extent that this connectome-based approach may be inappropriate for precision psychiatry and the goal of drawing inferences based on subject-level data. Here we note that the authors did not take into account factors affecting data quality and hence identification rates, independent of whether a low spatiotemporal resolution acquisition or a high spatiotemporal resolution acquisition is used. Specifically, we show here that the amount of data collected per subject and in-scanner motion are the predominant factors influencing identification rates, not the spatiotemporal resolution of the acquisition. To do this, we investigated identification rates in the HCP dataset as a function of the amount of data and motion. Using a dataset from the Consortium for Reliability and Reproducibility (CoRR), we investigated the impact of multiband versus non-multiband imaging parameters; that is, high spatiotemporal resolution versus low spatiotemporal resolution acquisitions. We show scan length and motion affect identification, whereas the imaging protocol does not affect these rates. Our results suggest that motion and amount of data per subject are the primary factors impacting individual connectivity profiles, but that within these constraints, individual differences in the connectome are readily observable.

Journal

NeuroimageElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off