Computational and functional characterization of four SNPs in the SOST locus associated with osteoporosis

Computational and functional characterization of four SNPs in the SOST locus associated with... The SOST gene encodes sclerostin, a C-terminal cysteine knot-like domain containing key negative regulator of osteoblastic bone formation that inhibits LRP5/6-mediated canonical Wnt signaling. Numerous single nucleotide polymorphisms (SNPs) in the SOST locus are firmly associated with bone mineral density (BMD) and fracture in genome-wide association studies (GWAS) and candidate gene association studies. However, the validation and mechanistic elucidation of causal genetic variants, especially for SNPs located beyond the promoter-proximal region, remain largely unresolved. By employing computational and experimental approaches, here we identify four SNPs rs1230399, rs7220711, rs1107748 and rs75901553 as functional variants which display allelic variation in SOST gene expression. The osteoporosis associated SNP rs1230399 in the SOST distal upstream regulatory region shows FOXA1 binding activity with subsequent transinactivation in a T allele-specific manner. The BMD GWAS lead SNPs rs7220711 and rs1107748 both reside in the 52-kb regulatory element deletion 35-kb downstream of the SOST gene which leads to Van Buchem disease. The rs7220711-A has a higher affinity for the transcriptional repressors MAFF or MAFK homodimers than rs7220711-G, while rs1107748 confers C allele specific transcriptional enhancer activity via a CTCF binding element. The variant rs75901553 C>T located in a conserved site of the SOST 3′ UTR abolishes a target binding site for miR-98-5p which is negatively responsive to parathyroid hormone or 17β-estradiol in osteoblastic cell lines. Our findings uncover the biological consequences of four independent genetic variants in the SOST region and their important roles in SOST expression via diverse mechanisms, providing new insights into the genetics and molecular pathogenesis of osteoporosis. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bone Elsevier

Computational and functional characterization of four SNPs in the SOST locus associated with osteoporosis

Loading next page...
 
/lp/elsevier/computational-and-functional-characterization-of-four-snps-in-the-sost-6oVv74GUbQ
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
8756-3282
D.O.I.
10.1016/j.bone.2018.01.001
Publisher site
See Article on Publisher Site

Abstract

The SOST gene encodes sclerostin, a C-terminal cysteine knot-like domain containing key negative regulator of osteoblastic bone formation that inhibits LRP5/6-mediated canonical Wnt signaling. Numerous single nucleotide polymorphisms (SNPs) in the SOST locus are firmly associated with bone mineral density (BMD) and fracture in genome-wide association studies (GWAS) and candidate gene association studies. However, the validation and mechanistic elucidation of causal genetic variants, especially for SNPs located beyond the promoter-proximal region, remain largely unresolved. By employing computational and experimental approaches, here we identify four SNPs rs1230399, rs7220711, rs1107748 and rs75901553 as functional variants which display allelic variation in SOST gene expression. The osteoporosis associated SNP rs1230399 in the SOST distal upstream regulatory region shows FOXA1 binding activity with subsequent transinactivation in a T allele-specific manner. The BMD GWAS lead SNPs rs7220711 and rs1107748 both reside in the 52-kb regulatory element deletion 35-kb downstream of the SOST gene which leads to Van Buchem disease. The rs7220711-A has a higher affinity for the transcriptional repressors MAFF or MAFK homodimers than rs7220711-G, while rs1107748 confers C allele specific transcriptional enhancer activity via a CTCF binding element. The variant rs75901553 C>T located in a conserved site of the SOST 3′ UTR abolishes a target binding site for miR-98-5p which is negatively responsive to parathyroid hormone or 17β-estradiol in osteoblastic cell lines. Our findings uncover the biological consequences of four independent genetic variants in the SOST region and their important roles in SOST expression via diverse mechanisms, providing new insights into the genetics and molecular pathogenesis of osteoporosis.

Journal

BoneElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off