Comprehensive effects of a sedge plant on CH4 and N2O emissions in an estuarine marsh

Comprehensive effects of a sedge plant on CH4 and N2O emissions in an estuarine marsh Although there have been numerous studies focusing on plants' roles in methane (CH4) emissions, the influencing mechanism of wetland plants on nitrous oxide (N2O) emissions has rarely been studied. Here, we test whether wetland plants also play an important role in N2O emissions. Gas fluxes were determined using the in situ static flux chamber technique. We also carried out pore-water extractions, sedge removal experiments and tests of N2O transportation. The brackish marsh acted as a net source of both CH4 and N2O. However, sedge plants played the opposite role in CH4 and N2O emissions. The removal of the sedges led to reduced CH4 emissions and increased accumulation of CH4 inside the sediment. Apart from being a conduit for CH4 transport, the sedges made a greater contribution to CH4 oxidation than CH4 production. The sedges exerted inhibitory effects on the release of N2O. The N2O was barely detectable inside the sediment in both vegetated and vegetation-removed plots. The denitrification measurements and nitrogen addition (the addition rates were equal to 0.028, 0.056 and 0.112 g m−2) experiments suggest that denitrification associated with N2O production occurred mainly in the surface sediment layer. The vascular sedge could transport atmospheric N2O downward into the rhizosphere. The rhizospheric sediment, together with the vascular sedge, became an effective sink of atmospheric N2O. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Estuarine Coastal and Shelf Science Elsevier

Comprehensive effects of a sedge plant on CH4 and N2O emissions in an estuarine marsh

Loading next page...
 
/lp/elsevier/comprehensive-effects-of-a-sedge-plant-on-ch4-and-n2o-emissions-in-an-6ClRhEzUKv
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0272-7714
eISSN
1096-0015
D.O.I.
10.1016/j.ecss.2018.03.008
Publisher site
See Article on Publisher Site

Abstract

Although there have been numerous studies focusing on plants' roles in methane (CH4) emissions, the influencing mechanism of wetland plants on nitrous oxide (N2O) emissions has rarely been studied. Here, we test whether wetland plants also play an important role in N2O emissions. Gas fluxes were determined using the in situ static flux chamber technique. We also carried out pore-water extractions, sedge removal experiments and tests of N2O transportation. The brackish marsh acted as a net source of both CH4 and N2O. However, sedge plants played the opposite role in CH4 and N2O emissions. The removal of the sedges led to reduced CH4 emissions and increased accumulation of CH4 inside the sediment. Apart from being a conduit for CH4 transport, the sedges made a greater contribution to CH4 oxidation than CH4 production. The sedges exerted inhibitory effects on the release of N2O. The N2O was barely detectable inside the sediment in both vegetated and vegetation-removed plots. The denitrification measurements and nitrogen addition (the addition rates were equal to 0.028, 0.056 and 0.112 g m−2) experiments suggest that denitrification associated with N2O production occurred mainly in the surface sediment layer. The vascular sedge could transport atmospheric N2O downward into the rhizosphere. The rhizospheric sediment, together with the vascular sedge, became an effective sink of atmospheric N2O.

Journal

Estuarine Coastal and Shelf ScienceElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off