Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions

Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar... A hydroxyapatite-biochar nanocomposite (HAP-BC) was successfully fabricated and its physicochemical properties characterized. The analyses showed that HAP nanoparticles were successfully loaded on the biochar surface. The adsorption of Pb(II), Cu(II), and Zn(II) by HAP-BC was systematically studied in single and ternary metal systems. The results demonstrated that pH affects the adsorption of heavy metals onto HAP-BC. Regarding the adsorption kinetics, the pseudo-second-order model showed the best fit for all three heavy metal ions on HAP-BC. In both single and ternary metal ion systems, the adsorption isotherm of Pb(II) by HAP-BC followed Langmuir model, while those of Cu(II) and Zn(II) fitted well with Freundlich model. The maximum adsorption capacity for each tested metal by HAP-BC was higher than that of pristine rice straw biochar (especially for Pb(II)) or those of other reported adsorbents. Therefore, HAP-BC could explore as a new material for future application in heavy metal removal. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Solid State Chemistry Elsevier

Competitive adsorption of Pb(II), Cu(II), and Zn(II) ions onto hydroxyapatite-biochar nanocomposite in aqueous solutions

Loading next page...
 
/lp/elsevier/competitive-adsorption-of-pb-ii-cu-ii-and-zn-ii-ions-onto-7H2HuBLhhw
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0022-4596
eISSN
1095-726X
D.O.I.
10.1016/j.jssc.2018.02.010
Publisher site
See Article on Publisher Site

Abstract

A hydroxyapatite-biochar nanocomposite (HAP-BC) was successfully fabricated and its physicochemical properties characterized. The analyses showed that HAP nanoparticles were successfully loaded on the biochar surface. The adsorption of Pb(II), Cu(II), and Zn(II) by HAP-BC was systematically studied in single and ternary metal systems. The results demonstrated that pH affects the adsorption of heavy metals onto HAP-BC. Regarding the adsorption kinetics, the pseudo-second-order model showed the best fit for all three heavy metal ions on HAP-BC. In both single and ternary metal ion systems, the adsorption isotherm of Pb(II) by HAP-BC followed Langmuir model, while those of Cu(II) and Zn(II) fitted well with Freundlich model. The maximum adsorption capacity for each tested metal by HAP-BC was higher than that of pristine rice straw biochar (especially for Pb(II)) or those of other reported adsorbents. Therefore, HAP-BC could explore as a new material for future application in heavy metal removal.

Journal

Journal of Solid State ChemistryElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off