Compensatory Nearly Neutral Mutations: Selection without Adaptation

Compensatory Nearly Neutral Mutations: Selection without Adaptation One implication of Kacser's analysis of complex metabolic systems is that mutations with small effects exist as a consequence of the typically small flux control coefficient relating enzyme activity to the rate of a metabolic process. Although a slightly detrimental mutation is somewhat less likely to become fixed by chance than a slightly favorable mutation, mutations that are slightly detrimental might be expected to be more numerous than favorable mutations owing to the previous incorporation of favorable mutations by a long history of natural selection. The result is that, as Ohta has pointed out, a significant fraction of mutations that are fixed in evolution are slightly detrimental. In the long run, the fixation of detrimental mutations in a gene increases the opportunity for the occurrence of a compensatory favorable mutation, either in the same gene or in an interacting gene. On a suitably long timescale, therefore, every gene incorporates favorable mutations that compensate for detrimental mutations previously fixed. This form of evolution is driven primarily by natural selection, but it results in no change or permanent improvement in enzymatic function. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Theoretical Biology Elsevier

Compensatory Nearly Neutral Mutations: Selection without Adaptation

Loading next page...
 
/lp/elsevier/compensatory-nearly-neutral-mutations-selection-without-adaptation-lmL5IdnNP7
Publisher
Elsevier
Copyright
Copyright © 1996 Academic Press
ISSN
0022-5193
eISSN
1095-8541
D.O.I.
10.1006/jtbi.1996.0168
Publisher site
See Article on Publisher Site

Abstract

One implication of Kacser's analysis of complex metabolic systems is that mutations with small effects exist as a consequence of the typically small flux control coefficient relating enzyme activity to the rate of a metabolic process. Although a slightly detrimental mutation is somewhat less likely to become fixed by chance than a slightly favorable mutation, mutations that are slightly detrimental might be expected to be more numerous than favorable mutations owing to the previous incorporation of favorable mutations by a long history of natural selection. The result is that, as Ohta has pointed out, a significant fraction of mutations that are fixed in evolution are slightly detrimental. In the long run, the fixation of detrimental mutations in a gene increases the opportunity for the occurrence of a compensatory favorable mutation, either in the same gene or in an interacting gene. On a suitably long timescale, therefore, every gene incorporates favorable mutations that compensate for detrimental mutations previously fixed. This form of evolution is driven primarily by natural selection, but it results in no change or permanent improvement in enzymatic function.

Journal

Journal of Theoretical BiologyElsevier

Published: Oct 7, 1996

There are no references for this article.

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off