Comparison of various pretreatment strategies and their effect on chemistry and structure of sugar beet pulp

Comparison of various pretreatment strategies and their effect on chemistry and structure of... Pretreatment is deemed as a key step to destroy biomass recalcitrance and improve enzyme accessibility to cellulose during the second generation bioethanol production. A series of pretreatments were applied to treat sugar beet pulp (SBP) to uncover their impact on chemical and structural changes, and enzymatic digestibility. The results showed that all the four pretreatments had effects on the physical structure and chemical compositions of SBP. When being subjected to aqueous ammonia pretreatment, SBP exhibited high cellulose content due to the degradation of neutral detergent soluble fraction and other amorphous components. FTIR analysis showed that aqueous ammonia pretreatment could cleave ester linkages between carbohydrates and lignin, and modify the phenolic hydroxyl in lignin, yet without obvious delignification. In addition, the aqueous ammonia pretreatment led to cell wall dislocation and lignin redistribution, and enhanced enzymatic hydrolysis. The results obtained here indicated that biomass recalcitrance was destroyed by morphological and chemical alternation. The reducing sugar yield of SBP pretreated by AA could reach 487.8 mg/g, which was 2.73 times higher than that of the control. Consequently, AA might be more suitable to pretreatment for SBP, compared to the other pretreatments. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Cleaner Production Elsevier

Comparison of various pretreatment strategies and their effect on chemistry and structure of sugar beet pulp

Loading next page...
 
/lp/elsevier/comparison-of-various-pretreatment-strategies-and-their-effect-on-RKDT6hyeGl
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0959-6526
D.O.I.
10.1016/j.jclepro.2018.01.259
Publisher site
See Article on Publisher Site

Abstract

Pretreatment is deemed as a key step to destroy biomass recalcitrance and improve enzyme accessibility to cellulose during the second generation bioethanol production. A series of pretreatments were applied to treat sugar beet pulp (SBP) to uncover their impact on chemical and structural changes, and enzymatic digestibility. The results showed that all the four pretreatments had effects on the physical structure and chemical compositions of SBP. When being subjected to aqueous ammonia pretreatment, SBP exhibited high cellulose content due to the degradation of neutral detergent soluble fraction and other amorphous components. FTIR analysis showed that aqueous ammonia pretreatment could cleave ester linkages between carbohydrates and lignin, and modify the phenolic hydroxyl in lignin, yet without obvious delignification. In addition, the aqueous ammonia pretreatment led to cell wall dislocation and lignin redistribution, and enhanced enzymatic hydrolysis. The results obtained here indicated that biomass recalcitrance was destroyed by morphological and chemical alternation. The reducing sugar yield of SBP pretreated by AA could reach 487.8 mg/g, which was 2.73 times higher than that of the control. Consequently, AA might be more suitable to pretreatment for SBP, compared to the other pretreatments.

Journal

Journal of Cleaner ProductionElsevier

Published: Apr 20, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off