Comparison of resistance improvement to fungal growth on green and conventional building materials by nano-metal impregnation

Comparison of resistance improvement to fungal growth on green and conventional building... This study is aimed for comparing the biological resistance of green and conventional building materials (BMs) before and after nano-metal treatment, as well as exploring best nano-metals to improve fungal growth resistance of BMs. The selected BMs include wooden flooring (WF), green wooden flooring (GWF), gypsum board (GB), green gypsum board (GGB), calcium silicate board (CSB), green calcium silicate board (GCSB), mineral fiber ceiling (MFC) and green mineral fiber ceiling (GMFC). The Aspergillus brasiliensis or Penicillium funiculosum was inoculated on each sample and their growth was visually evaluated according to ASTM G21-09.The fungal growth without nano-metals on test materials did not show that green materials were more prone to fungal growth. After nano-metal treatment, the observed order of fungal growth resistance of nano-metals at their highest selected concentrations on test materials was nano-zinc = nano-copper > nano-silver for WF and GWF, nano-zinc > nano-silver = nano-copper for GB, nano-zinc > nano-silver > nano-copper for GGB, CSB and GCSB, nano-silver > nano-copper = nano-zinc for MFC, and nano-silver > nano-copper > nano-zinc for GMFC. Nano-zinc seems to be the most favorable nano-metal for wood and wood composite materials. Green materials were less resistant to fungi attack relative to their conventional counterparts treated by nano-metals, particularly GWF and WF. All test nano-metals failed to provide complete protection against fungal growth on the eight test BMs at the selected concentrations. However, the higher the nano-metal concentration was, the longer the lag period until growth began and fewer fungi grew on the materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Building and Environment Elsevier

Comparison of resistance improvement to fungal growth on green and conventional building materials by nano-metal impregnation

Loading next page...
 
/lp/elsevier/comparison-of-resistance-improvement-to-fungal-growth-on-green-and-ZectvBH0Df
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier Ltd
ISSN
0360-1323
D.O.I.
10.1016/j.buildenv.2015.06.016
Publisher site
See Article on Publisher Site

Abstract

This study is aimed for comparing the biological resistance of green and conventional building materials (BMs) before and after nano-metal treatment, as well as exploring best nano-metals to improve fungal growth resistance of BMs. The selected BMs include wooden flooring (WF), green wooden flooring (GWF), gypsum board (GB), green gypsum board (GGB), calcium silicate board (CSB), green calcium silicate board (GCSB), mineral fiber ceiling (MFC) and green mineral fiber ceiling (GMFC). The Aspergillus brasiliensis or Penicillium funiculosum was inoculated on each sample and their growth was visually evaluated according to ASTM G21-09.The fungal growth without nano-metals on test materials did not show that green materials were more prone to fungal growth. After nano-metal treatment, the observed order of fungal growth resistance of nano-metals at their highest selected concentrations on test materials was nano-zinc = nano-copper > nano-silver for WF and GWF, nano-zinc > nano-silver = nano-copper for GB, nano-zinc > nano-silver > nano-copper for GGB, CSB and GCSB, nano-silver > nano-copper = nano-zinc for MFC, and nano-silver > nano-copper > nano-zinc for GMFC. Nano-zinc seems to be the most favorable nano-metal for wood and wood composite materials. Green materials were less resistant to fungi attack relative to their conventional counterparts treated by nano-metals, particularly GWF and WF. All test nano-metals failed to provide complete protection against fungal growth on the eight test BMs at the selected concentrations. However, the higher the nano-metal concentration was, the longer the lag period until growth began and fewer fungi grew on the materials.

Journal

Building and EnvironmentElsevier

Published: Nov 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off