Comparison of functional properties of edible insects and protein preparations thereof

Comparison of functional properties of edible insects and protein preparations thereof This study investigated the functional properties of three species of edible insects: Gryllodes sigillatus, Schistocerca gregaria, and Tenebrio molitor. The water and oil holding capacity, solubility, and foaming and emulsion properties were evaluated. The protein solubility showed minimum values at pH 5. The highest water and oil holding capacity was noticeable for the T. molitor protein preparation (3.95 g/g) and for the G. sigilltus protein preparation (3.33 g/g), respectively. The G. sigillatus protein preparation also showed the highest foaming capacity, foam stability, and emulsion activity (99.0%, 92.0%, and 72.62%, respectively), while the protein preparation from S. gregaria exhibited the highest emulsion stability (51.31%). This study has shown that whole insects and protein preparations thereof can be suitable for development of new food formulations. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png LWT - Food Science and Technology Elsevier

Comparison of functional properties of edible insects and protein preparations thereof

Loading next page...
 
/lp/elsevier/comparison-of-functional-properties-of-edible-insects-and-protein-J4uW6k6RB4
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0023-6438
D.O.I.
10.1016/j.lwt.2018.01.058
Publisher site
See Article on Publisher Site

Abstract

This study investigated the functional properties of three species of edible insects: Gryllodes sigillatus, Schistocerca gregaria, and Tenebrio molitor. The water and oil holding capacity, solubility, and foaming and emulsion properties were evaluated. The protein solubility showed minimum values at pH 5. The highest water and oil holding capacity was noticeable for the T. molitor protein preparation (3.95 g/g) and for the G. sigilltus protein preparation (3.33 g/g), respectively. The G. sigillatus protein preparation also showed the highest foaming capacity, foam stability, and emulsion activity (99.0%, 92.0%, and 72.62%, respectively), while the protein preparation from S. gregaria exhibited the highest emulsion stability (51.31%). This study has shown that whole insects and protein preparations thereof can be suitable for development of new food formulations.

Journal

LWT - Food Science and TechnologyElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off