Comparison between PCM filled glass windows and absorbing gas filled windows

Comparison between PCM filled glass windows and absorbing gas filled windows From the thermal point of view, windows represent the weak link between the internal and external ambients of a room. In cold climates, they are responsible for 10–25% of the heat lost from the heated ambient to the external atmosphere. In hot climates, the excessive solar radiation entering the internal ambient through the windows leads to increasing the cooling load of the refrigeration system. The use of absorbing gases filling the gap between glass sheets appears to be an alternative solution for thermally insulated glass windows. The other options one may incorporate filling materials such as silica aerogel or a PCM. In this work, a comparison between the thermal efficiency of two glass windows one filled with an absorbing gas and the other with a PCM and exposed to solar radiation in a hot climate is done. To model double glass window filled with infrared absorbing gases, a CW real gas model is used. A radiative convective conductive model and a radiative conductive model were investigated. Three mixtures of gases were used; a strongly absorbing gas mixture, an intermediate absorbing gas mixture and a transparent to infrared radiation mixture. To model the double glass window filled with a PCM, a relatively simple and effective radiation conduction one dimensional formulation is used. Heat transfer through the window is calculated and the total heat gain coefficients are compared and discussed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Energy and Buildings Elsevier

Comparison between PCM filled glass windows and absorbing gas filled windows

Loading next page...
 
/lp/elsevier/comparison-between-pcm-filled-glass-windows-and-absorbing-gas-filled-Hi8lBhVkuy
Publisher
Elsevier
Copyright
Copyright © 2007 Elsevier B.V.
ISSN
0378-7788
eISSN
1872-6178
DOI
10.1016/j.enbuild.2007.05.005
Publisher site
See Article on Publisher Site

Abstract

From the thermal point of view, windows represent the weak link between the internal and external ambients of a room. In cold climates, they are responsible for 10–25% of the heat lost from the heated ambient to the external atmosphere. In hot climates, the excessive solar radiation entering the internal ambient through the windows leads to increasing the cooling load of the refrigeration system. The use of absorbing gases filling the gap between glass sheets appears to be an alternative solution for thermally insulated glass windows. The other options one may incorporate filling materials such as silica aerogel or a PCM. In this work, a comparison between the thermal efficiency of two glass windows one filled with an absorbing gas and the other with a PCM and exposed to solar radiation in a hot climate is done. To model double glass window filled with infrared absorbing gases, a CW real gas model is used. A radiative convective conductive model and a radiative conductive model were investigated. Three mixtures of gases were used; a strongly absorbing gas mixture, an intermediate absorbing gas mixture and a transparent to infrared radiation mixture. To model the double glass window filled with a PCM, a relatively simple and effective radiation conduction one dimensional formulation is used. Heat transfer through the window is calculated and the total heat gain coefficients are compared and discussed.

Journal

Energy and BuildingsElsevier

Published: Jan 1, 2008

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off