Comparision of photocatalysis and photolysis processes for arsenic oxidation in water

Comparision of photocatalysis and photolysis processes for arsenic oxidation in water The oxidation of As(III) to As(V) in aqueous solution was evaluated using heterogeneous photocatalysis and photolysis. The influence of TiO2 as catalyst in different crystalline (rutile, anatase) and commercial forms was evaluated in a batch reactor and an insignificant difference was observed between them. The process by photocatalysis reached up to 97% As(III) oxidation and no significant difference was observed comparing to results obtained by photolysis. The photolysis experiments (UV radiation only), also carried out in a batch system, showed a high oxidation rate of As(III) (90% in 20min). The influence of different matrices (well water, river water and public water supply) were evaluated. Additionally, the effect of As(V) concentration, generated during the oxidation process, was studied. Continuous photolysis experiments using only UV radiation were performed, resulting in a high As(III) oxidation rate. Using a flow rate of 5mLmin−1 and an initial concentration of As(III) 200µgL−1, gave an oxidation percentage of As(III) of up to 72%, showing a simple and economical alternative to the oxidation step of As(III) to As(V) in the treatment of water contaminated with arsenic. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecotoxicology and Environmental Safety Elsevier

Comparision of photocatalysis and photolysis processes for arsenic oxidation in water

Loading next page...
 
/lp/elsevier/comparision-of-photocatalysis-and-photolysis-processes-for-arsenic-OIKJssa23U
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
0147-6513
eISSN
1090-2414
D.O.I.
10.1016/j.ecoenv.2018.01.001
Publisher site
See Article on Publisher Site

Abstract

The oxidation of As(III) to As(V) in aqueous solution was evaluated using heterogeneous photocatalysis and photolysis. The influence of TiO2 as catalyst in different crystalline (rutile, anatase) and commercial forms was evaluated in a batch reactor and an insignificant difference was observed between them. The process by photocatalysis reached up to 97% As(III) oxidation and no significant difference was observed comparing to results obtained by photolysis. The photolysis experiments (UV radiation only), also carried out in a batch system, showed a high oxidation rate of As(III) (90% in 20min). The influence of different matrices (well water, river water and public water supply) were evaluated. Additionally, the effect of As(V) concentration, generated during the oxidation process, was studied. Continuous photolysis experiments using only UV radiation were performed, resulting in a high As(III) oxidation rate. Using a flow rate of 5mLmin−1 and an initial concentration of As(III) 200µgL−1, gave an oxidation percentage of As(III) of up to 72%, showing a simple and economical alternative to the oxidation step of As(III) to As(V) in the treatment of water contaminated with arsenic.

Journal

Ecotoxicology and Environmental SafetyElsevier

Published: Apr 30, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from Google Scholar, PubMed
Create lists to organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off