Comparing the cooling effects of a tree and a concrete shelter using PET and UTCI

Comparing the cooling effects of a tree and a concrete shelter using PET and UTCI Trees could provide notable cooling by intercepting solar radiation and evapotranspiration. Human-made shelters in urban areas also serve as shading devices. However, few studies have compared the cooling efficacy of trees and artificial shelters. This study systematically quantified and compared the daytime and nighttime cooling effects of a large Chinese Banyan tree (Ficus microcarpa) with dense foliage and an extensive concrete shelter, in an urban park in Hong Kong's subtropical summer. Microclimatic parameters at the two sites were monitored to compare air temperature, and the computed values of PET (Physiological Equivalent Temperature) and UTCI (Universal Thermal Climate Index). The mean daytime cooling effects generated by the tree were 0.6 °C (air temperature), 3.9 °C (PET) and 2.5 °C (UTCI), which were higher than the shelter at 0.2 °C, 3.8 °C and 2.0 °C respectively. The differences were significant for air temperature and UTCI (p < .001 and p < .05 respectively, t-test) but not for PET (p = .261). The tree's mean daytime maximum cooling effects were 2.1 °C (air temperature), 18.8 °C (PET) and 10.3 °C (UTCI). The tree's mean nighttime cooling was significantly higher than the shelter for all three indices (p < .001, t-test). The thermal stress classifications by PET and UTCI were significantly different on the neutral or warmer side (p < .001, Chi-squared test), suggesting that they cannot be used interchangeably. The findings could inform decisions on natural versus artificial shelters in urban thermal design, and trigger comparative investigations in using PET and UTCI for outdoor thermal comfort assessment. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Building and Environment Elsevier

Comparing the cooling effects of a tree and a concrete shelter using PET and UTCI

Loading next page...
 
/lp/elsevier/comparing-the-cooling-effects-of-a-tree-and-a-concrete-shelter-using-dB16AhclKy
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0360-1323
D.O.I.
10.1016/j.buildenv.2017.12.013
Publisher site
See Article on Publisher Site

Abstract

Trees could provide notable cooling by intercepting solar radiation and evapotranspiration. Human-made shelters in urban areas also serve as shading devices. However, few studies have compared the cooling efficacy of trees and artificial shelters. This study systematically quantified and compared the daytime and nighttime cooling effects of a large Chinese Banyan tree (Ficus microcarpa) with dense foliage and an extensive concrete shelter, in an urban park in Hong Kong's subtropical summer. Microclimatic parameters at the two sites were monitored to compare air temperature, and the computed values of PET (Physiological Equivalent Temperature) and UTCI (Universal Thermal Climate Index). The mean daytime cooling effects generated by the tree were 0.6 °C (air temperature), 3.9 °C (PET) and 2.5 °C (UTCI), which were higher than the shelter at 0.2 °C, 3.8 °C and 2.0 °C respectively. The differences were significant for air temperature and UTCI (p < .001 and p < .05 respectively, t-test) but not for PET (p = .261). The tree's mean daytime maximum cooling effects were 2.1 °C (air temperature), 18.8 °C (PET) and 10.3 °C (UTCI). The tree's mean nighttime cooling was significantly higher than the shelter for all three indices (p < .001, t-test). The thermal stress classifications by PET and UTCI were significantly different on the neutral or warmer side (p < .001, Chi-squared test), suggesting that they cannot be used interchangeably. The findings could inform decisions on natural versus artificial shelters in urban thermal design, and trigger comparative investigations in using PET and UTCI for outdoor thermal comfort assessment.

Journal

Building and EnvironmentElsevier

Published: Feb 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off