Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices

Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with... The effluent of 17 sewage treatment works (STW) across Norway, Sweden, Finland, The Netherlands, Belgium, Germany, France and Switzerland was studied for the presence of estradiol (E2), estrone (E1), ethinylestradiol (EE2) and nonylphenol (NP). Treatment processes included primary and chemical treatment only, submerged aerated filter, oxidation ditch, activated sludge (AS) and combined trickling filter with activated sludge. The effluent strength ranged between 87 and 846 L/PE (population equivalent), the total hydraulic retention time (HRT) ranged between 4 and 120 h, sludge retention time (SRT) between 3 and 30 d, and water temperature ranged from 12 to 21 °C. The highest estrogen values were detected in the effluent of the STW which only used primary treatment (13 ng/L E2 and 35 ng/L E1) and on one occasion in one of the STW using the AS system (6.5 ng/L E2, 50.5 ng/L E1, but on three other occasions the concentrations in this STW were at least a factor of 6 lower). For the 16 STW employing secondary treatment E2 was only detected in the effluent of six works during the study period (average 0.7–5.7 ng/L). E1 was detected in the effluent of 13 of the same STW. The median value for E1 for the 16 STW with secondary treatment was 3.0 ng/L. EE2 was only detected in two STW (1.1, <0.8–2.8 ng/L). NP could be detected in the effluent of all 14 STW where this measurement was attempted, with a median of 0.31 μg/L and values ranging from 0.05 to 1.31 μg/L. A comparison of removal performance for E1 was carried out following prediction of the probable influent concentration. A weak but significant ( α <5%) correlation between E1 removal and HRT or SRT was observed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Water Research Elsevier

Comparing steroid estrogen, and nonylphenol content across a range of European sewage plants with different treatment and management practices

Loading next page...
 
/lp/elsevier/comparing-steroid-estrogen-and-nonylphenol-content-across-a-range-of-VlCEwtgyO6
Publisher
Elsevier
Copyright
Copyright © 2004 Elsevier Ltd
ISSN
0043-1354
DOI
10.1016/j.watres.2004.07.025
Publisher site
See Article on Publisher Site

Abstract

The effluent of 17 sewage treatment works (STW) across Norway, Sweden, Finland, The Netherlands, Belgium, Germany, France and Switzerland was studied for the presence of estradiol (E2), estrone (E1), ethinylestradiol (EE2) and nonylphenol (NP). Treatment processes included primary and chemical treatment only, submerged aerated filter, oxidation ditch, activated sludge (AS) and combined trickling filter with activated sludge. The effluent strength ranged between 87 and 846 L/PE (population equivalent), the total hydraulic retention time (HRT) ranged between 4 and 120 h, sludge retention time (SRT) between 3 and 30 d, and water temperature ranged from 12 to 21 °C. The highest estrogen values were detected in the effluent of the STW which only used primary treatment (13 ng/L E2 and 35 ng/L E1) and on one occasion in one of the STW using the AS system (6.5 ng/L E2, 50.5 ng/L E1, but on three other occasions the concentrations in this STW were at least a factor of 6 lower). For the 16 STW employing secondary treatment E2 was only detected in the effluent of six works during the study period (average 0.7–5.7 ng/L). E1 was detected in the effluent of 13 of the same STW. The median value for E1 for the 16 STW with secondary treatment was 3.0 ng/L. EE2 was only detected in two STW (1.1, <0.8–2.8 ng/L). NP could be detected in the effluent of all 14 STW where this measurement was attempted, with a median of 0.31 μg/L and values ranging from 0.05 to 1.31 μg/L. A comparison of removal performance for E1 was carried out following prediction of the probable influent concentration. A weak but significant ( α <5%) correlation between E1 removal and HRT or SRT was observed.

Journal

Water ResearchElsevier

Published: Jan 1, 2005

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off