Comparing five modelling techniques for predicting forest characteristics

Comparing five modelling techniques for predicting forest characteristics Broad-scale maps of forest characteristics are needed throughout the United States for a wide variety of forest land management applications. Inexpensive maps can be produced by modelling forest class and structure variables collected in nationwide forest inventories as functions of satellite-based information. But little work has been directed at comparing modelling techniques to determine which tools are best suited to mapping tasks given multiple objectives and logistical constraints. Consequently, five modelling techniques were compared for mapping forest characteristics in the Interior Western United States. The modelling techniques included linear models (LMs), generalized additive models (GAMs), classification and regression trees (CARTs), multivariate adaptive regression splines (MARS), and artificial neural networks (ANNs). Models were built for two discrete and four continuous forest response variables using a variety of satellite-based predictor variables within each of five ecologically different regions. All techniques proved themselves workable in an automated environment. When their potential mapping ability was explored through simulations, tremendous advantages were seen in use of MARS and ANN for prediction over LMs, GAMs, and CART. However, much smaller differences were seen when using real data. In some instances, a simple linear approach worked virtually as well as the more complex models, while small gains were seen using more complex models in other instances. In real data runs, MARS and GAMS performed (marginally) best for prediction of forest characteristics. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Ecological Modelling Elsevier

Comparing five modelling techniques for predicting forest characteristics

Loading next page...
 
/lp/elsevier/comparing-five-modelling-techniques-for-predicting-forest-hcVaSowXdG
Publisher
Elsevier
Copyright
Copyright © 2002 Elsevier Science B.V.
ISSN
0304-3800
eISSN
1872-7026
DOI
10.1016/S0304-3800(02)00197-7
Publisher site
See Article on Publisher Site

Abstract

Broad-scale maps of forest characteristics are needed throughout the United States for a wide variety of forest land management applications. Inexpensive maps can be produced by modelling forest class and structure variables collected in nationwide forest inventories as functions of satellite-based information. But little work has been directed at comparing modelling techniques to determine which tools are best suited to mapping tasks given multiple objectives and logistical constraints. Consequently, five modelling techniques were compared for mapping forest characteristics in the Interior Western United States. The modelling techniques included linear models (LMs), generalized additive models (GAMs), classification and regression trees (CARTs), multivariate adaptive regression splines (MARS), and artificial neural networks (ANNs). Models were built for two discrete and four continuous forest response variables using a variety of satellite-based predictor variables within each of five ecologically different regions. All techniques proved themselves workable in an automated environment. When their potential mapping ability was explored through simulations, tremendous advantages were seen in use of MARS and ANN for prediction over LMs, GAMs, and CART. However, much smaller differences were seen when using real data. In some instances, a simple linear approach worked virtually as well as the more complex models, while small gains were seen using more complex models in other instances. In real data runs, MARS and GAMS performed (marginally) best for prediction of forest characteristics.

Journal

Ecological ModellingElsevier

Published: Nov 30, 2002

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create folders to
organize your research

Export folders, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off