Comparative toxicities of silver nitrate, silver nanocolloids, and silver chloro-complexes to Japanese medaka embryos, and later effects on population growth rate

Comparative toxicities of silver nitrate, silver nanocolloids, and silver chloro-complexes to... Fish embryo toxicology is important because embryos are more susceptible than adults to toxicants. In addition, the aquatic toxicity of chemicals depends on water quality. We examined the toxicities to medaka embryos of three types of silver—AgNO3, silver nanocolloids (SNCs), and silver ions from silver nanoparticle plates (SNPPs)—under three pH conditions (4.0, 7.0, and 9.0) in embryo-rearing medium (ERM) or ultrapure water. Furthermore, we tested the later-life-stage effects of SNCs on medaka and their population growth. “Later-life-stage effects” were defined here as delayed toxic effects that occurred during the adult stage of organisms that had been exposed to toxicant during their early life stage only. AgNO3, SNCs, and silver ions were less toxic in ERM than in ultrapure water. Release of silver ions from the SNPPs was pH dependent: in ERM, silver toxicity was decreased owing to the formation of silver chloro-complexes. SNC toxicity was higher at pH 4.0 than at 7.0 or 9.0. AgNO3 was more toxic than SNCs. To observe later-life effects of SNCs, larvae hatched from embryos exposed to 0.01 mg/L SNCs in ultrapure water were incubated to maturity under clean conditions. The mature medaka were then allowed to reproduce for 21 days. Calculations using survival ratios and reproduction data indicated that the intrinsic population growth rate decreased after exposure of embryos to SNC. SNC exposure reduced the extinction time as a function of the medaka population-carrying capacity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Comparative toxicities of silver nitrate, silver nanocolloids, and silver chloro-complexes to Japanese medaka embryos, and later effects on population growth rate

Loading next page...
 
/lp/elsevier/comparative-toxicities-of-silver-nitrate-silver-nanocolloids-and-kBtp2UZ712
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.10.028
Publisher site
See Article on Publisher Site

Abstract

Fish embryo toxicology is important because embryos are more susceptible than adults to toxicants. In addition, the aquatic toxicity of chemicals depends on water quality. We examined the toxicities to medaka embryos of three types of silver—AgNO3, silver nanocolloids (SNCs), and silver ions from silver nanoparticle plates (SNPPs)—under three pH conditions (4.0, 7.0, and 9.0) in embryo-rearing medium (ERM) or ultrapure water. Furthermore, we tested the later-life-stage effects of SNCs on medaka and their population growth. “Later-life-stage effects” were defined here as delayed toxic effects that occurred during the adult stage of organisms that had been exposed to toxicant during their early life stage only. AgNO3, SNCs, and silver ions were less toxic in ERM than in ultrapure water. Release of silver ions from the SNPPs was pH dependent: in ERM, silver toxicity was decreased owing to the formation of silver chloro-complexes. SNC toxicity was higher at pH 4.0 than at 7.0 or 9.0. AgNO3 was more toxic than SNCs. To observe later-life effects of SNCs, larvae hatched from embryos exposed to 0.01 mg/L SNCs in ultrapure water were incubated to maturity under clean conditions. The mature medaka were then allowed to reproduce for 21 days. Calculations using survival ratios and reproduction data indicated that the intrinsic population growth rate decreased after exposure of embryos to SNC. SNC exposure reduced the extinction time as a function of the medaka population-carrying capacity.

Journal

Environmental PollutionElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off