Community structure of elasmobranchs in estuaries along the northwest Gulf of Mexico

Community structure of elasmobranchs in estuaries along the northwest Gulf of Mexico Estuaries promote high levels of productivity and biodiversity by providing habitat for many biological communities due to their wide range of environmental conditions. Estuarine systems serve as nurseries, areas for parturition, and feeding grounds for elasmobranchs. However, estuaries face an array of anthropogenic pressures, including overfishing, altered flow regimes, pollution, and habitat destruction. Given the vulnerability of estuarine ecosystems, observing long-term changes in community structure is essential to understanding the effects of anthropogenic stressors. Elasmobranch community structure was analyzed among eight estuaries in the northwest Gulf of Mexico to evaluate spatial and temporal variability in species abundance and diversity using bi-annual fisheries independent gillnet survey data over three decades (1985–2014). Ten species comprised 99.4% of elasmobranchs caught which included 35.3% bull sharks (Carcharhinus leucas), 18.1% bonnetheads (Sphyrna tiburo), 17.0% cownose rays (Rhinoptera bonasus), 13.4% blacktip sharks (Carcharhinus limbatus), 5.9% Atlantic stingrays (Dasyatis sabina), 3.1% Atlantic sharpnose sharks (Rhizoprionodon terraenovae), 2.7% spinner sharks (Carcharhinus brevipinna), 2.1% scalloped hammerheads (Sphyrna lewini), 1.7% finetooth sharks (Carcharhinus isodon), and 0.7% lemon sharks (Negaprion brevirostris). During the study period, elasmobranch community structure changed among estuaries and among decades. Bull sharks, bonnetheads, cownose rays, blacktip sharks, and spinner sharks all increased in abundance during the study period, whereas finetooth sharks and lemon sharks decreased over time. Higher latitude estuaries were dominated by bull sharks while lower latitude estuaries were dominated by cownose rays. Salinity was the most important environmental variable in predicting individual elasmobranch species abundance (deviance explained: 14.4 ± 6.5 SD), while temperature and depth also played a role in shaping community structure. Diversity was greatest in mid-latitudinal estuaries with spatially and temporally dynamic salinity regimes. As environmental change and human impacts persist across much of the world, understanding environmental drivers of community structure using long-term datasets will provide insight to how these changes influence coastal ecosystems, and enable more comprehensive and scale-independent models to be developed for the management and conservation of coastal ecotones. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Estuarine Coastal and Shelf Science Elsevier

Community structure of elasmobranchs in estuaries along the northwest Gulf of Mexico

Loading next page...
 
/lp/elsevier/community-structure-of-elasmobranchs-in-estuaries-along-the-northwest-yZSD0hDEfe
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0272-7714
eISSN
1096-0015
D.O.I.
10.1016/j.ecss.2018.02.023
Publisher site
See Article on Publisher Site

Abstract

Estuaries promote high levels of productivity and biodiversity by providing habitat for many biological communities due to their wide range of environmental conditions. Estuarine systems serve as nurseries, areas for parturition, and feeding grounds for elasmobranchs. However, estuaries face an array of anthropogenic pressures, including overfishing, altered flow regimes, pollution, and habitat destruction. Given the vulnerability of estuarine ecosystems, observing long-term changes in community structure is essential to understanding the effects of anthropogenic stressors. Elasmobranch community structure was analyzed among eight estuaries in the northwest Gulf of Mexico to evaluate spatial and temporal variability in species abundance and diversity using bi-annual fisheries independent gillnet survey data over three decades (1985–2014). Ten species comprised 99.4% of elasmobranchs caught which included 35.3% bull sharks (Carcharhinus leucas), 18.1% bonnetheads (Sphyrna tiburo), 17.0% cownose rays (Rhinoptera bonasus), 13.4% blacktip sharks (Carcharhinus limbatus), 5.9% Atlantic stingrays (Dasyatis sabina), 3.1% Atlantic sharpnose sharks (Rhizoprionodon terraenovae), 2.7% spinner sharks (Carcharhinus brevipinna), 2.1% scalloped hammerheads (Sphyrna lewini), 1.7% finetooth sharks (Carcharhinus isodon), and 0.7% lemon sharks (Negaprion brevirostris). During the study period, elasmobranch community structure changed among estuaries and among decades. Bull sharks, bonnetheads, cownose rays, blacktip sharks, and spinner sharks all increased in abundance during the study period, whereas finetooth sharks and lemon sharks decreased over time. Higher latitude estuaries were dominated by bull sharks while lower latitude estuaries were dominated by cownose rays. Salinity was the most important environmental variable in predicting individual elasmobranch species abundance (deviance explained: 14.4 ± 6.5 SD), while temperature and depth also played a role in shaping community structure. Diversity was greatest in mid-latitudinal estuaries with spatially and temporally dynamic salinity regimes. As environmental change and human impacts persist across much of the world, understanding environmental drivers of community structure using long-term datasets will provide insight to how these changes influence coastal ecosystems, and enable more comprehensive and scale-independent models to be developed for the management and conservation of coastal ecotones.

Journal

Estuarine Coastal and Shelf ScienceElsevier

Published: May 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off