Combined effects of steel fiber and coarse aggregate size on the compressive and flexural toughness of high-strength concrete

Combined effects of steel fiber and coarse aggregate size on the compressive and flexural... This paper investigates the effects of steel fiber content and coarse aggregate size on the mechanical properties of high-strength concrete with a specified compressive strength value of 60 MPa. The paper also explores the correlation between the compressive and flexural toughness of high-strength steel fiber-reinforced concrete (SFRC). For this purpose, twelve high-strength SFRC mixtures with four fiber volume fraction of steel fiber (Vf = 0.5%, 1.0%, 1.5%, and 2.0%) and different aggregate sizes were designed and fabricated. Compressive and flexural tests for each concrete mixture were conducted, and the test results were used to investigate the effects of steel fiber volume fraction and aggregate size on the compressive and flexural toughness of high-strength SFRC prims. The results indicate that the mechanical properties of SFRC are related more closely to volume fraction than to aggregate size. The compressive and flexural toughness ratios of the SFRC significantly improved with an increase in fiber content. Also, equations that are suggested to determine the compressive toughness ratio based on the equivalent flexural strength ratio were used to predict the mechanical properties of the SFRC in this study. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Composite Structures Elsevier

Combined effects of steel fiber and coarse aggregate size on the compressive and flexural toughness of high-strength concrete

Loading next page...
 
/lp/elsevier/combined-effects-of-steel-fiber-and-coarse-aggregate-size-on-the-HMDBpRtskd
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0263-8223
eISSN
1879-1085
D.O.I.
10.1016/j.compstruct.2017.11.009
Publisher site
See Article on Publisher Site

Abstract

This paper investigates the effects of steel fiber content and coarse aggregate size on the mechanical properties of high-strength concrete with a specified compressive strength value of 60 MPa. The paper also explores the correlation between the compressive and flexural toughness of high-strength steel fiber-reinforced concrete (SFRC). For this purpose, twelve high-strength SFRC mixtures with four fiber volume fraction of steel fiber (Vf = 0.5%, 1.0%, 1.5%, and 2.0%) and different aggregate sizes were designed and fabricated. Compressive and flexural tests for each concrete mixture were conducted, and the test results were used to investigate the effects of steel fiber volume fraction and aggregate size on the compressive and flexural toughness of high-strength SFRC prims. The results indicate that the mechanical properties of SFRC are related more closely to volume fraction than to aggregate size. The compressive and flexural toughness ratios of the SFRC significantly improved with an increase in fiber content. Also, equations that are suggested to determine the compressive toughness ratio based on the equivalent flexural strength ratio were used to predict the mechanical properties of the SFRC in this study.

Journal

Composite StructuresElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off