Combined effects of hypoxia or elevated temperature and Deepwater Horizon crude oil exposure on juvenile mahi-mahi swimming performance

Combined effects of hypoxia or elevated temperature and Deepwater Horizon crude oil exposure on... This study examined potential interactive effects of co-exposure to Deepwater Horizon (DWH) crude oil (∼30 μg L−1 ΣPAHs) for 24 h and either hypoxia (2.5 mg O2 L−1; 40% O2 saturation) or elevated temperature (30 °C) on the swimming performance of juvenile mahi-mahi (Coryphaena hippurus). Additionally, effects of shorter duration exposures to equal or higher doses of oil alone either prior to swimming or during the actual swim trial itself were examined. Only exposure to hypoxia alone or combined with crude oil elicited significant decreases in critical swimming speed (Ucrit) and to a similar extent (∼20%). In contrast, results indicate that elevated temperature might ameliorate some effects of oil exposure on swimming performance and that effects of shorter duration exposures are either reduced or delayed. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Marine Environmental Research Elsevier

Combined effects of hypoxia or elevated temperature and Deepwater Horizon crude oil exposure on juvenile mahi-mahi swimming performance

Loading next page...
 
/lp/elsevier/combined-effects-of-hypoxia-or-elevated-temperature-and-deepwater-uxSDbCVVQe
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0141-1136
eISSN
1879-0291
D.O.I.
10.1016/j.marenvres.2018.05.009
Publisher site
See Article on Publisher Site

Abstract

This study examined potential interactive effects of co-exposure to Deepwater Horizon (DWH) crude oil (∼30 μg L−1 ΣPAHs) for 24 h and either hypoxia (2.5 mg O2 L−1; 40% O2 saturation) or elevated temperature (30 °C) on the swimming performance of juvenile mahi-mahi (Coryphaena hippurus). Additionally, effects of shorter duration exposures to equal or higher doses of oil alone either prior to swimming or during the actual swim trial itself were examined. Only exposure to hypoxia alone or combined with crude oil elicited significant decreases in critical swimming speed (Ucrit) and to a similar extent (∼20%). In contrast, results indicate that elevated temperature might ameliorate some effects of oil exposure on swimming performance and that effects of shorter duration exposures are either reduced or delayed.

Journal

Marine Environmental ResearchElsevier

Published: Aug 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off