Colloidal plasmonic structures for harvesting solar radiation

Colloidal plasmonic structures for harvesting solar radiation Direct Solar Absorption Collectors explore the thermo-optical properties of fluids to convert solar radiation into thermal energy. Colloids of metallic nanoparticles have shown a great potential to convert solar radiation into thermal energy efficiently, because of the matching between the absorption peak of the localized surface plasmon resonance and the solar radiation spectrum. Recently, multilayered metallic nano structures have been broadly studied for Thermo-optical applications due to the possibility to tune the plasmon resonance next to the near infrared region. In this work, using a full-wave field numerical model, we study the solar absorption of metallic nanofluids composed of Solid structures (Sphere, Cube, Tetrahedral, Octahedral), Silica-based structures (Shell and Multilayered) and its elliptical versions. Although a large part of the metallic material is replaced for SiO2 in the nanofluid composition of NanoShell (NS) and Multilayered (ML) structures, the values of solar radiation absorber coefficients are larger than the obtained with solid particles. Also, the quantity of metal is just 18% (NS) and 53% (ML) of the material necessary to fabricate colloids of solid particles. For the elliptical structures, the values of solar radiation absorber condition are larger than the obtained with spherical structures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Renewable Energy Elsevier

Colloidal plasmonic structures for harvesting solar radiation

Loading next page...
 
/lp/elsevier/colloidal-plasmonic-structures-for-harvesting-solar-radiation-8J2HEFbDdP
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0960-1481
eISSN
1879-0682
D.O.I.
10.1016/j.renene.2017.10.112
Publisher site
See Article on Publisher Site

Abstract

Direct Solar Absorption Collectors explore the thermo-optical properties of fluids to convert solar radiation into thermal energy. Colloids of metallic nanoparticles have shown a great potential to convert solar radiation into thermal energy efficiently, because of the matching between the absorption peak of the localized surface plasmon resonance and the solar radiation spectrum. Recently, multilayered metallic nano structures have been broadly studied for Thermo-optical applications due to the possibility to tune the plasmon resonance next to the near infrared region. In this work, using a full-wave field numerical model, we study the solar absorption of metallic nanofluids composed of Solid structures (Sphere, Cube, Tetrahedral, Octahedral), Silica-based structures (Shell and Multilayered) and its elliptical versions. Although a large part of the metallic material is replaced for SiO2 in the nanofluid composition of NanoShell (NS) and Multilayered (ML) structures, the values of solar radiation absorber coefficients are larger than the obtained with solid particles. Also, the quantity of metal is just 18% (NS) and 53% (ML) of the material necessary to fabricate colloids of solid particles. For the elliptical structures, the values of solar radiation absorber condition are larger than the obtained with spherical structures.

Journal

Renewable EnergyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial