Coded aperture design for solving the phase retrieval problem in X-ray crystallography

Coded aperture design for solving the phase retrieval problem in X-ray crystallography X-ray crystallography is an experimental technique used in material analysis that allows to measure the atomic positions of the elements present in a crystal. This technique is based on the X-ray diffraction patterns that provide electronic and elastic properties of the crystal of interest. Thus, the crystal can be uniquely identified by means of the phase of its diffraction patterns that are also used to analyze the material of interest. The phase of the X-ray cannot be directly measured; however, it can be recovered from the intensity of diffraction patterns. A recent work has shown that the phase signal can be recovered more efficiently when the acquisition architecture includes an optical element, known as coded aperture, such that the underlying signal is recovered from coded diffraction patterns. A coded aperture is an element that modulates the X-ray diffraction patterns by blocking some X-ray beams. The structure and the number of coded projections are crucial inasmuch they determine the quality and the acquisition time of the X-ray signal. This paper presents the analysis of a coded X-ray Crystallography system, and the design of the spatial structure of the coded aperture, such that the images are recovered with high PSNR (Peak Signal to Noise Ratio) using the minimum number of coded projections. The simulations indicate that the designed coded apertures obtain a reduction of up to 50% in the number of coded projections and an increase in the PSNR of up to 2 dB when the results are compared with the reconstructed images by using random non-designed coded aperture structures. All simulations were carried out on a set of diffraction pattern images, obtained by using the SAXS/WAXS X-ray crystallography software to simulated the diffraction patterns of a real crystal structure, called Rhombic Dodecahedron. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Journal of Computational and Applied Mathematics Elsevier

Coded aperture design for solving the phase retrieval problem in X-ray crystallography

Loading next page...
 
/lp/elsevier/coded-aperture-design-for-solving-the-phase-retrieval-problem-in-x-ray-qQ6q6Z2adB
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0377-0427
eISSN
1879-1778
D.O.I.
10.1016/j.cam.2018.02.002
Publisher site
See Article on Publisher Site

Abstract

X-ray crystallography is an experimental technique used in material analysis that allows to measure the atomic positions of the elements present in a crystal. This technique is based on the X-ray diffraction patterns that provide electronic and elastic properties of the crystal of interest. Thus, the crystal can be uniquely identified by means of the phase of its diffraction patterns that are also used to analyze the material of interest. The phase of the X-ray cannot be directly measured; however, it can be recovered from the intensity of diffraction patterns. A recent work has shown that the phase signal can be recovered more efficiently when the acquisition architecture includes an optical element, known as coded aperture, such that the underlying signal is recovered from coded diffraction patterns. A coded aperture is an element that modulates the X-ray diffraction patterns by blocking some X-ray beams. The structure and the number of coded projections are crucial inasmuch they determine the quality and the acquisition time of the X-ray signal. This paper presents the analysis of a coded X-ray Crystallography system, and the design of the spatial structure of the coded aperture, such that the images are recovered with high PSNR (Peak Signal to Noise Ratio) using the minimum number of coded projections. The simulations indicate that the designed coded apertures obtain a reduction of up to 50% in the number of coded projections and an increase in the PSNR of up to 2 dB when the results are compared with the reconstructed images by using random non-designed coded aperture structures. All simulations were carried out on a set of diffraction pattern images, obtained by using the SAXS/WAXS X-ray crystallography software to simulated the diffraction patterns of a real crystal structure, called Rhombic Dodecahedron.

Journal

Journal of Computational and Applied MathematicsElsevier

Published: Aug 15, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial