Coastal knickpoints and the competition between fluvial and wave-driven erosion on rocky coastlines

Coastal knickpoints and the competition between fluvial and wave-driven erosion on rocky coastlines Active margin coastlines are distinguished by rock erosion that acts in two different directions: waves erode the coast horizontally or landwards, a process that creates sea cliffs; and rivers and streams erode the landscape vertically via channel incision. The relative rates of each process exert a dominant control on coastline morphology. Using a model of river channel incision and sea-cliff retreat, we explore how terrestrial and marine erosion compete to shape coastal topography, and specifically what conditions encourage the development of coastal knickpoints (i.e., a river or stream channels that end at a raised sea-cliff edge). We then compare results to actual landscapes. Model results and observations show that coastal knickpoint development is strongly dependent on drainage basin area, where knickpoints typically occur in drainage basins smaller than 5×105–6×106m2, as well as channel geometry and sea-cliff retreat rate. In our study area, coastal knickpoints with persistent flow (waterfalls) are uncommon and form only within a small morphological window when 1) drainage basin area is large enough to sustain steady stream discharge, but not large enough to out-compete sea-cliff formation, 2) sea-cliff retreat is rapid, and 3) channel concavity is low so that channel slopes at the coast are high. This particular geomorphic combination can sustain sea-cliff formation even when streams tap into larger drainage basins with greater discharge and more stream power, and provides an initial explanation of why persistent coastal waterfalls are, along many coastlines, relatively rare features. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Geomorphology Elsevier

Coastal knickpoints and the competition between fluvial and wave-driven erosion on rocky coastlines

Loading next page...
 
/lp/elsevier/coastal-knickpoints-and-the-competition-between-fluvial-and-wave-bdd2WoQqJb
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0169-555X
eISSN
1872-695X
D.O.I.
10.1016/j.geomorph.2017.12.035
Publisher site
See Article on Publisher Site

Abstract

Active margin coastlines are distinguished by rock erosion that acts in two different directions: waves erode the coast horizontally or landwards, a process that creates sea cliffs; and rivers and streams erode the landscape vertically via channel incision. The relative rates of each process exert a dominant control on coastline morphology. Using a model of river channel incision and sea-cliff retreat, we explore how terrestrial and marine erosion compete to shape coastal topography, and specifically what conditions encourage the development of coastal knickpoints (i.e., a river or stream channels that end at a raised sea-cliff edge). We then compare results to actual landscapes. Model results and observations show that coastal knickpoint development is strongly dependent on drainage basin area, where knickpoints typically occur in drainage basins smaller than 5×105–6×106m2, as well as channel geometry and sea-cliff retreat rate. In our study area, coastal knickpoints with persistent flow (waterfalls) are uncommon and form only within a small morphological window when 1) drainage basin area is large enough to sustain steady stream discharge, but not large enough to out-compete sea-cliff formation, 2) sea-cliff retreat is rapid, and 3) channel concavity is low so that channel slopes at the coast are high. This particular geomorphic combination can sustain sea-cliff formation even when streams tap into larger drainage basins with greater discharge and more stream power, and provides an initial explanation of why persistent coastal waterfalls are, along many coastlines, relatively rare features.

Journal

GeomorphologyElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off