Co-transport and remobilization of Cu and Pb in quartz column by carbon dots

Co-transport and remobilization of Cu and Pb in quartz column by carbon dots Carbon nanoparticles such graphene, carbon nanotubes, and carbon dots offer the potential to improve environmental treatment technologies due to their unique properties such as low toxicity and high metal sorption capacity. However, there are no studies on facilitated transport and remobilization of pre-sorbed metals by carbon dot (CD) nanoparticles in quartz sand columns. Here, we investigate the effects of solution ionic strength (IS; 1, 100 and 200 mM NaCl) and pH (Chen et al., 2017; Chen et al., 2010; Cornell and Schwertmann, 2006), initial CD concentration (200, 400, 600 and 800 mg L−1), and clay content (10, 20 and 30%w kaolinite) in quartz sand columns on the transport, retention and remobilization of Cu and Pb in saturated (upward flow) quartz porous media. Batch sorption experiments were employed to underpin the findings of the column transport experiments. Both CD and quartz adsorbed Cu and Pb from water, but adsorption was higher on CD than quartz.Co-transport experiment demonstrated the CD-facilitated transport of Cu and Pb. Sequential transport experiments (first three phases) demonstrated the retention of Cu and Pb in the quartz column, with higher retention of Pb compared to Cu. The Cu and Pb retention was attributed to their sorption on the quartz grains and precipitation under the experimental conditions investigated in this study. Cu retention increased with the increase in ionic strength, pH and clay content. Pb was nearly totally retained in the quartz column at all experimental conditions. The subsequent injection of CD resulted in Cu and Pb remobilization to different extents, except in the presence of high kaolinite concentration. CD is most efficient in remobilizing Cu and Pb at 400 mg L−1 CD concentration and under low ionic strength (ca. 1–100 mM), low pH (ca. 6) and in the absence of clays. Deviation from these conditions results in reduced remobilization of Cu and Pb. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Engineering Failure Analysis Elsevier

Co-transport and remobilization of Cu and Pb in quartz column by carbon dots

Loading next page...
 
/lp/elsevier/co-transport-and-remobilization-of-cu-and-pb-in-quartz-column-by-eHpsiOLCk8
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
1350-6307
eISSN
1873-1961
D.O.I.
10.1016/j.scitotenv.2018.01.184
Publisher site
See Article on Publisher Site

Abstract

Carbon nanoparticles such graphene, carbon nanotubes, and carbon dots offer the potential to improve environmental treatment technologies due to their unique properties such as low toxicity and high metal sorption capacity. However, there are no studies on facilitated transport and remobilization of pre-sorbed metals by carbon dot (CD) nanoparticles in quartz sand columns. Here, we investigate the effects of solution ionic strength (IS; 1, 100 and 200 mM NaCl) and pH (Chen et al., 2017; Chen et al., 2010; Cornell and Schwertmann, 2006), initial CD concentration (200, 400, 600 and 800 mg L−1), and clay content (10, 20 and 30%w kaolinite) in quartz sand columns on the transport, retention and remobilization of Cu and Pb in saturated (upward flow) quartz porous media. Batch sorption experiments were employed to underpin the findings of the column transport experiments. Both CD and quartz adsorbed Cu and Pb from water, but adsorption was higher on CD than quartz.Co-transport experiment demonstrated the CD-facilitated transport of Cu and Pb. Sequential transport experiments (first three phases) demonstrated the retention of Cu and Pb in the quartz column, with higher retention of Pb compared to Cu. The Cu and Pb retention was attributed to their sorption on the quartz grains and precipitation under the experimental conditions investigated in this study. Cu retention increased with the increase in ionic strength, pH and clay content. Pb was nearly totally retained in the quartz column at all experimental conditions. The subsequent injection of CD resulted in Cu and Pb remobilization to different extents, except in the presence of high kaolinite concentration. CD is most efficient in remobilizing Cu and Pb at 400 mg L−1 CD concentration and under low ionic strength (ca. 1–100 mM), low pH (ca. 6) and in the absence of clays. Deviation from these conditions results in reduced remobilization of Cu and Pb.

Journal

Engineering Failure AnalysisElsevier

Published: Sep 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off