Co-transport and remobilization of Cu and Pb in quartz column by carbon dots

Co-transport and remobilization of Cu and Pb in quartz column by carbon dots Carbon nanoparticles such graphene, carbon nanotubes, and carbon dots offer the potential to improve environmental treatment technologies due to their unique properties such as low toxicity and high metal sorption capacity. However, there are no studies on facilitated transport and remobilization of pre-sorbed metals by carbon dot (CD) nanoparticles in quartz sand columns. Here, we investigate the effects of solution ionic strength (IS; 1, 100 and 200 mM NaCl) and pH (Chen et al., 2017; Chen et al., 2010; Cornell and Schwertmann, 2006), initial CD concentration (200, 400, 600 and 800 mg L−1), and clay content (10, 20 and 30%w kaolinite) in quartz sand columns on the transport, retention and remobilization of Cu and Pb in saturated (upward flow) quartz porous media. Batch sorption experiments were employed to underpin the findings of the column transport experiments. Both CD and quartz adsorbed Cu and Pb from water, but adsorption was higher on CD than quartz.Co-transport experiment demonstrated the CD-facilitated transport of Cu and Pb. Sequential transport experiments (first three phases) demonstrated the retention of Cu and Pb in the quartz column, with higher retention of Pb compared to Cu. The Cu and Pb retention was attributed to their sorption on the quartz grains and precipitation under the experimental conditions investigated in this study. Cu retention increased with the increase in ionic strength, pH and clay content. Pb was nearly totally retained in the quartz column at all experimental conditions. The subsequent injection of CD resulted in Cu and Pb remobilization to different extents, except in the presence of high kaolinite concentration. CD is most efficient in remobilizing Cu and Pb at 400 mg L−1 CD concentration and under low ionic strength (ca. 1–100 mM), low pH (ca. 6) and in the absence of clays. Deviation from these conditions results in reduced remobilization of Cu and Pb. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Co-transport and remobilization of Cu and Pb in quartz column by carbon dots

Loading next page...
 
/lp/elsevier/co-transport-and-remobilization-of-cu-and-pb-in-quartz-column-by-eHpsiOLCk8
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2018.01.184
Publisher site
See Article on Publisher Site

Abstract

Carbon nanoparticles such graphene, carbon nanotubes, and carbon dots offer the potential to improve environmental treatment technologies due to their unique properties such as low toxicity and high metal sorption capacity. However, there are no studies on facilitated transport and remobilization of pre-sorbed metals by carbon dot (CD) nanoparticles in quartz sand columns. Here, we investigate the effects of solution ionic strength (IS; 1, 100 and 200 mM NaCl) and pH (Chen et al., 2017; Chen et al., 2010; Cornell and Schwertmann, 2006), initial CD concentration (200, 400, 600 and 800 mg L−1), and clay content (10, 20 and 30%w kaolinite) in quartz sand columns on the transport, retention and remobilization of Cu and Pb in saturated (upward flow) quartz porous media. Batch sorption experiments were employed to underpin the findings of the column transport experiments. Both CD and quartz adsorbed Cu and Pb from water, but adsorption was higher on CD than quartz.Co-transport experiment demonstrated the CD-facilitated transport of Cu and Pb. Sequential transport experiments (first three phases) demonstrated the retention of Cu and Pb in the quartz column, with higher retention of Pb compared to Cu. The Cu and Pb retention was attributed to their sorption on the quartz grains and precipitation under the experimental conditions investigated in this study. Cu retention increased with the increase in ionic strength, pH and clay content. Pb was nearly totally retained in the quartz column at all experimental conditions. The subsequent injection of CD resulted in Cu and Pb remobilization to different extents, except in the presence of high kaolinite concentration. CD is most efficient in remobilizing Cu and Pb at 400 mg L−1 CD concentration and under low ionic strength (ca. 1–100 mM), low pH (ca. 6) and in the absence of clays. Deviation from these conditions results in reduced remobilization of Cu and Pb.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial