Clinical hip fracture is accompanied by compression induced failure in the superior cortex of the femoral neck

Clinical hip fracture is accompanied by compression induced failure in the superior cortex of the... Hip fractures pose a major health problem throughout the world due to their devastating impact. Current theories for why these injuries are so prevalent in the elderly point to an increased propensity to fall and decreases in bone mass with ageing. However, the fracture mechanisms, particularly the stress and strain conditions leading to bone failure at the hip remain unclear. Here, we directly examined the cortical bone from clinical intra-capsular hip fractures at a microscopic level, and found strong evidence of compression induced failure in the superior cortex. A total of 143 sections obtained from 24 femoral neck samples that were retrieved from 24 fracturing patients at surgery were examined using laser scanning confocal microscopy (LSCM) after fluorescein staining. The stained microcracks showed significantly higher density in the superior cortex than in the inferior cortex, indicating a greater magnitude of strain in the superior femoral neck during the failure-associated deformation and fracture process. The predominant stress state for each section was reconstructed based on the unique correlation between the microcrack pattern and the stress state. Specifically, we found clear evidence of longitudinal compression and buckling as the primary failure mechanisms in the superior cortex. These findings demonstrate the importance of microcrack analysis in studying clinical hip fractures, and point to the central role of the superior cortex failure as an important aspect of the failure initiation in clinical intra-capsular hip fractures. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Bone Elsevier

Clinical hip fracture is accompanied by compression induced failure in the superior cortex of the femoral neck

Loading next page...
 
/lp/elsevier/clinical-hip-fracture-is-accompanied-by-compression-induced-failure-in-Cdhk6EnK5t
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Inc.
ISSN
8756-3282
D.O.I.
10.1016/j.bone.2017.12.020
Publisher site
See Article on Publisher Site

Abstract

Hip fractures pose a major health problem throughout the world due to their devastating impact. Current theories for why these injuries are so prevalent in the elderly point to an increased propensity to fall and decreases in bone mass with ageing. However, the fracture mechanisms, particularly the stress and strain conditions leading to bone failure at the hip remain unclear. Here, we directly examined the cortical bone from clinical intra-capsular hip fractures at a microscopic level, and found strong evidence of compression induced failure in the superior cortex. A total of 143 sections obtained from 24 femoral neck samples that were retrieved from 24 fracturing patients at surgery were examined using laser scanning confocal microscopy (LSCM) after fluorescein staining. The stained microcracks showed significantly higher density in the superior cortex than in the inferior cortex, indicating a greater magnitude of strain in the superior femoral neck during the failure-associated deformation and fracture process. The predominant stress state for each section was reconstructed based on the unique correlation between the microcrack pattern and the stress state. Specifically, we found clear evidence of longitudinal compression and buckling as the primary failure mechanisms in the superior cortex. These findings demonstrate the importance of microcrack analysis in studying clinical hip fractures, and point to the central role of the superior cortex failure as an important aspect of the failure initiation in clinical intra-capsular hip fractures.

Journal

BoneElsevier

Published: Mar 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off