Climate change impact under alternate realizations of climate scenarios on maize yield and biomass in Ghana

Climate change impact under alternate realizations of climate scenarios on maize yield and... Climate change is unequivocal and these changes have increased over the past few years. The recent vulnerability and prospect of climate variability and change impact, thus, warrants measures now to reduce the adverse impacts. This study presents an estimate of the effects of climate variables on potential maize productivity and an assessment of the most limiting climatic drivers in the future climate scenarios for maize production in central Ghana, constituting major maize production areas. The time-slices 2000, 2030 and 2080 were chosen to represent the baseline, near future and end century climate, respectively. Furthermore, two Representative Concentration Pathways (RCPs) namely RCP 4.5 and RCP 8.5 from the GFDL-ESM2M, GISS-E2-H, and HadGEM2-ES, General Circulation Models (GCMs), were selected. Simulations based on the model LINTUL5 were used to estimate the crop responses.There is an average increase in the maize yield and aboveground biomass in the projected scenarios by 57% and 59% respectively under HadGEM2-ES (RCP 8.5) in the time horizon 2030. However, variability in the projected average maize yield and above ground biomass compared to the baseline values, is ranging from 183.6kgha−1 under HadGEM2-ES (RCP 8.5) by time horizon 2080 to a maximum of 1326.8kgha−1 under HadGEM2-ES (RCP 8.5) by 2030 and a minimum increase of 169.9kgha−1 under GFDL-ESM2M (RCP 8.5) by time horizon 2080 to a maximum increase of 2386.1kgha−1 under HadGEM2-ES (RCP 8.5) by time horizon 2030.The reasons for potential benefit in maize yields across the climate scenarios was attributed to the positive effect of CO2, reduced water stress reflected by lower atmospheric water demand during crop growth period. It also indicates that water is the limiting factor for maize production in the study region. However, temperature (through shortening of the maize growing cycle), and solar radiation may remain the limiting factors for maize production. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Agricultural Systems Elsevier

Climate change impact under alternate realizations of climate scenarios on maize yield and biomass in Ghana

Loading next page...
 
/lp/elsevier/climate-change-impact-under-alternate-realizations-of-climate-3j431sR3qs
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0308-521x
D.O.I.
10.1016/j.agsy.2017.03.011
Publisher site
See Article on Publisher Site

Abstract

Climate change is unequivocal and these changes have increased over the past few years. The recent vulnerability and prospect of climate variability and change impact, thus, warrants measures now to reduce the adverse impacts. This study presents an estimate of the effects of climate variables on potential maize productivity and an assessment of the most limiting climatic drivers in the future climate scenarios for maize production in central Ghana, constituting major maize production areas. The time-slices 2000, 2030 and 2080 were chosen to represent the baseline, near future and end century climate, respectively. Furthermore, two Representative Concentration Pathways (RCPs) namely RCP 4.5 and RCP 8.5 from the GFDL-ESM2M, GISS-E2-H, and HadGEM2-ES, General Circulation Models (GCMs), were selected. Simulations based on the model LINTUL5 were used to estimate the crop responses.There is an average increase in the maize yield and aboveground biomass in the projected scenarios by 57% and 59% respectively under HadGEM2-ES (RCP 8.5) in the time horizon 2030. However, variability in the projected average maize yield and above ground biomass compared to the baseline values, is ranging from 183.6kgha−1 under HadGEM2-ES (RCP 8.5) by time horizon 2080 to a maximum of 1326.8kgha−1 under HadGEM2-ES (RCP 8.5) by 2030 and a minimum increase of 169.9kgha−1 under GFDL-ESM2M (RCP 8.5) by time horizon 2080 to a maximum increase of 2386.1kgha−1 under HadGEM2-ES (RCP 8.5) by time horizon 2030.The reasons for potential benefit in maize yields across the climate scenarios was attributed to the positive effect of CO2, reduced water stress reflected by lower atmospheric water demand during crop growth period. It also indicates that water is the limiting factor for maize production in the study region. However, temperature (through shortening of the maize growing cycle), and solar radiation may remain the limiting factors for maize production.

Journal

Agricultural SystemsElsevier

Published: Jan 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off