Chronological and geomorphological investigation of fossil debris-covered glaciers in relation to deglaciation processes: A case study in the Sierra de La Demanda, northern Spain

Chronological and geomorphological investigation of fossil debris-covered glaciers in relation to... In this study, fossil debris-covered glaciers are investigated and dated in the Sierra de la Demanda, northern Spain. They are located in glacial valleys of approximately 1 km in length, where several moraines represent distinct phases of the deglaciation period. Several boulders in the moraines and fossil debris-covered glaciers were selected for analysis of 10Be surface exposure dating. A minimum age of 17.8 ± 2.2 ka was obtained for the outermost moraine in the San Lorenzo cirque, and was attributed to the global Last Glacial Maximum (LGM) or earlier glacial stages, based on deglaciation dates determined in other mountain areas of northern Spain. The youngest moraines were dated to approximately 16.7 ± 1.4 ka, and hence correspond to the GS-2a stadial (Oldest Dryas). Given that the debris-covered glaciers fossilize intermediate moraines, it was deduced that they developed between the LGM and the Oldest Dryas, coinciding with a period of extensive deglaciation. During this deglaciation phase, the cirque headwalls likely discharged large quantities of boulders and blocks that covered the residual ice masses. The resulting debris-covered glaciers evolved slowly because the debris mantle preserved the ice core from rapid ablation, and consequently they remained active until the end of the Late Glacial or the beginning of the Holocene (for the San Lorenzo cirque) and the Holocene Thermal Maximum (for the Mencilla cirque). The north-facing part of the Mencilla cirque ensured longer preservation of the ice core. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Quaternary Science Reviews Elsevier

Chronological and geomorphological investigation of fossil debris-covered glaciers in relation to deglaciation processes: A case study in the Sierra de La Demanda, northern Spain

Loading next page...
 
/lp/elsevier/chronological-and-geomorphological-investigation-of-fossil-debris-gCIOuF2g0k
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0277-3791
eISSN
1873-457X
D.O.I.
10.1016/j.quascirev.2017.06.034
Publisher site
See Article on Publisher Site

Abstract

In this study, fossil debris-covered glaciers are investigated and dated in the Sierra de la Demanda, northern Spain. They are located in glacial valleys of approximately 1 km in length, where several moraines represent distinct phases of the deglaciation period. Several boulders in the moraines and fossil debris-covered glaciers were selected for analysis of 10Be surface exposure dating. A minimum age of 17.8 ± 2.2 ka was obtained for the outermost moraine in the San Lorenzo cirque, and was attributed to the global Last Glacial Maximum (LGM) or earlier glacial stages, based on deglaciation dates determined in other mountain areas of northern Spain. The youngest moraines were dated to approximately 16.7 ± 1.4 ka, and hence correspond to the GS-2a stadial (Oldest Dryas). Given that the debris-covered glaciers fossilize intermediate moraines, it was deduced that they developed between the LGM and the Oldest Dryas, coinciding with a period of extensive deglaciation. During this deglaciation phase, the cirque headwalls likely discharged large quantities of boulders and blocks that covered the residual ice masses. The resulting debris-covered glaciers evolved slowly because the debris mantle preserved the ice core from rapid ablation, and consequently they remained active until the end of the Late Glacial or the beginning of the Holocene (for the San Lorenzo cirque) and the Holocene Thermal Maximum (for the Mencilla cirque). The north-facing part of the Mencilla cirque ensured longer preservation of the ice core.

Journal

Quaternary Science ReviewsElsevier

Published: Aug 15, 2017

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off