Chenier-type ridges in Giralia Bay (Exmouth Gulf, Western Australia) - Processes, chronostratigraphy, and significance for recording past tropical cyclones

Chenier-type ridges in Giralia Bay (Exmouth Gulf, Western Australia) - Processes,... Past coastal flooding events may be inferred from geomorphic and sedimentary archives, including particular landforms (e.g., beach ridges, washover fans), deposits (e.g., washover sediments in lagoons) or erosional features (e.g., erosional scarps within strandplains). In Giralia Bay, southern Exmouth Gulf (Western Australia), sandy ridge sequences in supratidal elevations form the landward margin of extensive mudflats. The formation of these ridges is assumed to be mainly driven by tropical cyclones (TCs), although their depositional processes need to be clarified. We investigated the supratidal sandy ridge sequence in Giralia Bay by carrying out process monitoring, geomorphological mapping by means of an unmanned aerial vehicle survey, as well as sedimentological and geochronological investigations and multivariate statistics. Based on the resulting data, this study aims at (i) identifying the most important driving processes to form the sandy ridges; (ii) establishing their chronostratigraphy; and (iii) understanding their significance for recording past TC activity. Trench excavations revealed sandy units that are interbedded with mud layers at the base, similar to the present distal mudflat sediments. On top, mud intercalations recede, and sand layers of varying grain size distribution dominate. In the upper part of the trenches, younger sediment layers onlap older ones documenting the stepwise seaward accretion of the ridges onto the mudflat. While our data suggests that tidal processes have only limited effects on ridge activity, sediment transport, erosion and deposition seems to be driven by both TC-induced storm surges and high magnitude precipitation events causing surface discharge. Most accretionary sand units are thus assumed to represent events of morphodynamic activity during TC-induced flooding since the mid-Holocene. Ridge activity is recorded in a roughly decadal resolution and over historical as well as prehistorical/Holocene time scales. While the ridges do not represent beach or chenier ridges sensu stricto, they may be described as chenier-type ridges due to their stratigraphical architecture. Ridge evolution, however, over a millennial time scale seems to be indicated by the landward rise of the sequence possibly corresponding to the mid-Holocene sea-level highstand of Western Australia of at least 1–2m above present mean sea level. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Marine Geology Elsevier

Chenier-type ridges in Giralia Bay (Exmouth Gulf, Western Australia) - Processes, chronostratigraphy, and significance for recording past tropical cyclones

Loading next page...
 
/lp/elsevier/chenier-type-ridges-in-giralia-bay-exmouth-gulf-western-australia-Hepy2DGm0C
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier B.V.
ISSN
0025-3227
eISSN
1872-6151
D.O.I.
10.1016/j.margeo.2017.03.005
Publisher site
See Article on Publisher Site

Abstract

Past coastal flooding events may be inferred from geomorphic and sedimentary archives, including particular landforms (e.g., beach ridges, washover fans), deposits (e.g., washover sediments in lagoons) or erosional features (e.g., erosional scarps within strandplains). In Giralia Bay, southern Exmouth Gulf (Western Australia), sandy ridge sequences in supratidal elevations form the landward margin of extensive mudflats. The formation of these ridges is assumed to be mainly driven by tropical cyclones (TCs), although their depositional processes need to be clarified. We investigated the supratidal sandy ridge sequence in Giralia Bay by carrying out process monitoring, geomorphological mapping by means of an unmanned aerial vehicle survey, as well as sedimentological and geochronological investigations and multivariate statistics. Based on the resulting data, this study aims at (i) identifying the most important driving processes to form the sandy ridges; (ii) establishing their chronostratigraphy; and (iii) understanding their significance for recording past TC activity. Trench excavations revealed sandy units that are interbedded with mud layers at the base, similar to the present distal mudflat sediments. On top, mud intercalations recede, and sand layers of varying grain size distribution dominate. In the upper part of the trenches, younger sediment layers onlap older ones documenting the stepwise seaward accretion of the ridges onto the mudflat. While our data suggests that tidal processes have only limited effects on ridge activity, sediment transport, erosion and deposition seems to be driven by both TC-induced storm surges and high magnitude precipitation events causing surface discharge. Most accretionary sand units are thus assumed to represent events of morphodynamic activity during TC-induced flooding since the mid-Holocene. Ridge activity is recorded in a roughly decadal resolution and over historical as well as prehistorical/Holocene time scales. While the ridges do not represent beach or chenier ridges sensu stricto, they may be described as chenier-type ridges due to their stratigraphical architecture. Ridge evolution, however, over a millennial time scale seems to be indicated by the landward rise of the sequence possibly corresponding to the mid-Holocene sea-level highstand of Western Australia of at least 1–2m above present mean sea level.

Journal

Marine GeologyElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off