Chemical characterization of the long-range transport of firework/firecracker emissions over the Korean Peninsula: A novel indicator of Asian continental outflows

Chemical characterization of the long-range transport of firework/firecracker emissions over the... The long-range transport (LRT) of pollutants between countries in Northeast Asia is a serious issue. However, reliable quantification of LRT pollutants has not been performed due to a lack of clear evidence of the transport between countries. Hourly chemical composition of PM2.5 (particulate matter with a diameter of ≤2.5 μm) was measured continuously at a suburban site in Daejeon, Korea during the Lunar New Year festival period to investigate the influence of firework/firecracker emissions from China over areas downwind subject to LRT. Elevated PM10 (particulate matter with a diameter of ≤10 μm) and PM2.5 mass concentrations were observed over the Korean Peninsula during the third day of the Lunar New Year festival (30 January 2017) when air masses originated from the northern part of China. Water-soluble potassium (K+), an indicator of both firework/firecracker and biomass burning, increased significantly during the third day of the Lunar New Year festival with an episode to non-episode ratio of 7.5, whereas no increase in levoglucosan, an indicator of biomass burning, was observed. Because firework/firecracker activities do not typically occur over the Korean Peninsula during the Lunar New Year festival, elevated K+ indicates that haze plumes mixed with firework/firecracker emissions in China impacted the Korean Peninsula through the LRT. This study finds, for the first time, clear evidence of the LRT of pollutants between source and receptor countries in Northeast Asia under Asian continental outflow. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Atmospheric Environment Elsevier

Chemical characterization of the long-range transport of firework/firecracker emissions over the Korean Peninsula: A novel indicator of Asian continental outflows

Loading next page...
 
/lp/elsevier/chemical-characterization-of-the-long-range-transport-of-firework-QcQ5T3ISv5
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
1352-2310
eISSN
1873-2844
D.O.I.
10.1016/j.atmosenv.2018.02.013
Publisher site
See Article on Publisher Site

Abstract

The long-range transport (LRT) of pollutants between countries in Northeast Asia is a serious issue. However, reliable quantification of LRT pollutants has not been performed due to a lack of clear evidence of the transport between countries. Hourly chemical composition of PM2.5 (particulate matter with a diameter of ≤2.5 μm) was measured continuously at a suburban site in Daejeon, Korea during the Lunar New Year festival period to investigate the influence of firework/firecracker emissions from China over areas downwind subject to LRT. Elevated PM10 (particulate matter with a diameter of ≤10 μm) and PM2.5 mass concentrations were observed over the Korean Peninsula during the third day of the Lunar New Year festival (30 January 2017) when air masses originated from the northern part of China. Water-soluble potassium (K+), an indicator of both firework/firecracker and biomass burning, increased significantly during the third day of the Lunar New Year festival with an episode to non-episode ratio of 7.5, whereas no increase in levoglucosan, an indicator of biomass burning, was observed. Because firework/firecracker activities do not typically occur over the Korean Peninsula during the Lunar New Year festival, elevated K+ indicates that haze plumes mixed with firework/firecracker emissions in China impacted the Korean Peninsula through the LRT. This study finds, for the first time, clear evidence of the LRT of pollutants between source and receptor countries in Northeast Asia under Asian continental outflow.

Journal

Atmospheric EnvironmentElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off