Charge density at the contacts of symmetric and asymmetric organic diodes

Charge density at the contacts of symmetric and asymmetric organic diodes The organic diode, or metal-organic-metal (MOM) structure, is constituent key building block of organic-devices. The physical understanding and performance evaluation of these devices usually require proper modeling and simulation of the metal-organic structure. A topic of major concern in the simulation of the MOM structure, although frequently mishandled, is the selection of proper boundary conditions at the metal-organic interface. In this work, we determine the boundary conditions for the charge density at the metal-organic contact. Symmetric and asymmetric organic diodes with unipolar and bipolar conduction are analyzed. Using experimental current-voltage curves, an analytical method to determine the value of the charge density at the contacts is proposed. In single-carrier diodes, we observe that the charge concentration at the interface due to injection follows a power-law function of the current in metal-organic contacts in drift-dominated transport. This boundary condition is the way to introduce the contact effects in models. The contact affects the other regions (e.g., the bulk) as a boundary condition. This boundary condition for the charge density keeps information about the limited recombination velocity at the contacts and the contribution from space charge limited conduction (SCLC) in the bulk. In diffusion-dominated transport, at low bias close to the diode’s built-in voltage, the charge density at the contact is almost constant with the current. The complete relation between charge and current for injecting electrodes, extracted from the analysis of single-carrier diodes, can be used as boundary condition in bipolar devices. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Organic Electronics Elsevier

Charge density at the contacts of symmetric and asymmetric organic diodes

Loading next page...
 
/lp/elsevier/charge-density-at-the-contacts-of-symmetric-and-asymmetric-organic-3NePWv6IsP
Publisher
Elsevier
Copyright
Copyright © 2016 Elsevier B.V.
ISSN
1566-1199
D.O.I.
10.1016/j.orgel.2016.05.009
Publisher site
See Article on Publisher Site

Abstract

The organic diode, or metal-organic-metal (MOM) structure, is constituent key building block of organic-devices. The physical understanding and performance evaluation of these devices usually require proper modeling and simulation of the metal-organic structure. A topic of major concern in the simulation of the MOM structure, although frequently mishandled, is the selection of proper boundary conditions at the metal-organic interface. In this work, we determine the boundary conditions for the charge density at the metal-organic contact. Symmetric and asymmetric organic diodes with unipolar and bipolar conduction are analyzed. Using experimental current-voltage curves, an analytical method to determine the value of the charge density at the contacts is proposed. In single-carrier diodes, we observe that the charge concentration at the interface due to injection follows a power-law function of the current in metal-organic contacts in drift-dominated transport. This boundary condition is the way to introduce the contact effects in models. The contact affects the other regions (e.g., the bulk) as a boundary condition. This boundary condition for the charge density keeps information about the limited recombination velocity at the contacts and the contribution from space charge limited conduction (SCLC) in the bulk. In diffusion-dominated transport, at low bias close to the diode’s built-in voltage, the charge density at the contact is almost constant with the current. The complete relation between charge and current for injecting electrodes, extracted from the analysis of single-carrier diodes, can be used as boundary condition in bipolar devices.

Journal

Organic ElectronicsElsevier

Published: Aug 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

Monthly Plan

  • Read unlimited articles
  • Personalized recommendations
  • No expiration
  • Print 20 pages per month
  • 20% off on PDF purchases
  • Organize your research
  • Get updates on your journals and topic searches

$49/month

Start Free Trial

14-day Free Trial

Best Deal — 39% off

Annual Plan

  • All the features of the Professional Plan, but for 39% off!
  • Billed annually
  • No expiration
  • For the normal price of 10 articles elsewhere, you get one full year of unlimited access to articles.

$588

$360/year

billed annually
Start Free Trial

14-day Free Trial