Characterizing Protein–Protein Interactions Using Mass Spectrometry: Challenges and Opportunities

Characterizing Protein–Protein Interactions Using Mass Spectrometry: Challenges and Opportunities During the past decades, mass spectrometry (MS)-based proteomics has become an important technology to identify protein–protein interactions (PPIs). The application of a quantitative filter in protein enrichments from crude lysates to discriminate bona fide interactors from background proteins has proved to be particularly powerful. Recently, many different approaches to identify PPIs have been developed, including proximity-ligation technology and global interactome profiling based on the co-behavior of protein complexes in biochemical purification or perturbation experiments. Furthermore, methodologies have been introduced that provide information regarding the stoichiometry and topology of detected PPIs. We review these novel methodologies and emphasize the need to miniaturize workflows to analyze protein interactions in biological and pathological contexts where sample amounts are limited. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Trends in Biotechnology Elsevier

Characterizing Protein–Protein Interactions Using Mass Spectrometry: Challenges and Opportunities

Loading next page...
 
/lp/elsevier/characterizing-protein-protein-interactions-using-mass-spectrometry-Ctytf0ITGz
Publisher
Elsevier Current Trends
Copyright
Copyright © 2016 Elsevier Ltd
ISSN
0167-7799
D.O.I.
10.1016/j.tibtech.2016.02.014
Publisher site
See Article on Publisher Site

Abstract

During the past decades, mass spectrometry (MS)-based proteomics has become an important technology to identify protein–protein interactions (PPIs). The application of a quantitative filter in protein enrichments from crude lysates to discriminate bona fide interactors from background proteins has proved to be particularly powerful. Recently, many different approaches to identify PPIs have been developed, including proximity-ligation technology and global interactome profiling based on the co-behavior of protein complexes in biochemical purification or perturbation experiments. Furthermore, methodologies have been introduced that provide information regarding the stoichiometry and topology of detected PPIs. We review these novel methodologies and emphasize the need to miniaturize workflows to analyze protein interactions in biological and pathological contexts where sample amounts are limited.

Journal

Trends in BiotechnologyElsevier

Published: Oct 1, 2016

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off