Characterizing isotopic compositions of TC-C, NO3−-N, and NH4+-N in PM2.5 in South Korea: Impact of China's winter heating

Characterizing isotopic compositions of TC-C, NO3−-N, and NH4+-N in PM2.5 in South Korea:... The origin of PM2.5 has long been the subject of debate and stable isotopic tools have been applied to decipher. In this study, weekly PM2.5 samples were simultaneously collected at an urban (Seoul) and rural (Baengnyeong Island) site in Korea from January 2014 through February 2016. The seasonal variation of isotopic species showed significant seasonal differences with sinusoidal variation. The isotopic results implied that isotope species from Baengnyeong were mostly originated from coal combustion during China's winter heating seasons, whereas in summer, the isotopic patterns observed that were more likely to be from marine. In Seoul, coal combustion related isotopic patterns increased during China's winter heating period while vehicle related isotopic patterns were dominated whole seasons by default. Therefore, aerosol formation was originated from long-range transported coal combustion-related NOx by vehicle-related NH3 in Seoul. δN-NH4+ in Seoul showed highly enriched 15N compositions in all seasons, indicating that NH3 from vehicle emission is the important source of NH4+ in PM2.5 in Seoul. In addition, Baengnyeong should be consistently considered as a key region for observing the changes of isotopic features depend on the contribution of individual emissions to the atmospheric as a result of the reduction of coal consumption in China. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Pollution Elsevier

Characterizing isotopic compositions of TC-C, NO3−-N, and NH4+-N in PM2.5 in South Korea: Impact of China's winter heating

Loading next page...
 
/lp/elsevier/characterizing-isotopic-compositions-of-tc-c-no3-n-and-nh4-n-in-pm2-5-J2SItBleuN
Publisher
Elsevier
Copyright
Copyright © 2017 Elsevier Ltd
ISSN
0269-7491
D.O.I.
10.1016/j.envpol.2017.10.072
Publisher site
See Article on Publisher Site

Abstract

The origin of PM2.5 has long been the subject of debate and stable isotopic tools have been applied to decipher. In this study, weekly PM2.5 samples were simultaneously collected at an urban (Seoul) and rural (Baengnyeong Island) site in Korea from January 2014 through February 2016. The seasonal variation of isotopic species showed significant seasonal differences with sinusoidal variation. The isotopic results implied that isotope species from Baengnyeong were mostly originated from coal combustion during China's winter heating seasons, whereas in summer, the isotopic patterns observed that were more likely to be from marine. In Seoul, coal combustion related isotopic patterns increased during China's winter heating period while vehicle related isotopic patterns were dominated whole seasons by default. Therefore, aerosol formation was originated from long-range transported coal combustion-related NOx by vehicle-related NH3 in Seoul. δN-NH4+ in Seoul showed highly enriched 15N compositions in all seasons, indicating that NH3 from vehicle emission is the important source of NH4+ in PM2.5 in Seoul. In addition, Baengnyeong should be consistently considered as a key region for observing the changes of isotopic features depend on the contribution of individual emissions to the atmospheric as a result of the reduction of coal consumption in China.

Journal

Environmental PollutionElsevier

Published: Feb 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 12 million articles from more than
10,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Unlimited reading

Read as many articles as you need. Full articles with original layout, charts and figures. Read online, from anywhere.

Stay up to date

Keep up with your field with Personalized Recommendations and Follow Journals to get automatic updates.

Organize your research

It’s easy to organize your research with our built-in tools.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve Freelancer

DeepDyve Pro

Price
FREE
$49/month

$360/year
Save searches from
Google Scholar,
PubMed
Create lists to
organize your research
Export lists, citations
Read DeepDyve articles
Abstract access only
Unlimited access to over
18 million full-text articles
Print
20 pages/month
PDF Discount
20% off