Characterizing heavy metals in combined sewer overflows and its influence on microbial diversity

Characterizing heavy metals in combined sewer overflows and its influence on microbial diversity This study characterized the pollution levels and potential ecological risk of heavy metals in combined sewer overflows (CSOs) and their effects on microbial diversity in nearby riparian sediments. The chemical fractionations of Zn, Cd, Cr, and Cu in dry-weather flows, wet-weather flows (CSO discharges), sewer sediments, and surface runoffs were determined. Geo-accumulation (Igeo) and ecological risk (RI) indexes were employed for metal risk assessment. DNA extraction and polymerase chain reaction (PCR) amplification on the Illumina MiSeq platform were conducted. The results show that heavy metals contents in fine-sized fractions have higher values than those in coarse-sized fractions. Chemical fractionation analysis suggests that Zn and Cd are two of the most bioavailable metals impacted by anthropogenic activities. Cr and Cu contents in CSOs are relatively stable and could exist for extended periods. According to the RI analysis, CSOs pose a considerable risk (RI-G2) to receiving waters due to the higher bioavailability of Cd, which was consistent with the Igeo index. Furthermore, under the stress of the highly-bioavailable Cd and Cu, Gram +ves in the riparian benthic sediment gradually became dominant with metal-tolerance property. Therefore, long-term exposure to highly bioavailable metals could exhibit great impacts on microbial diversity. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science of the Total Environment Elsevier

Characterizing heavy metals in combined sewer overflows and its influence on microbial diversity

Loading next page...
 
/lp/elsevier/characterizing-heavy-metals-in-combined-sewer-overflows-and-its-IzeKjZeqc0
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier B.V.
ISSN
0048-9697
eISSN
1879-1026
D.O.I.
10.1016/j.scitotenv.2017.12.338
Publisher site
See Article on Publisher Site

Abstract

This study characterized the pollution levels and potential ecological risk of heavy metals in combined sewer overflows (CSOs) and their effects on microbial diversity in nearby riparian sediments. The chemical fractionations of Zn, Cd, Cr, and Cu in dry-weather flows, wet-weather flows (CSO discharges), sewer sediments, and surface runoffs were determined. Geo-accumulation (Igeo) and ecological risk (RI) indexes were employed for metal risk assessment. DNA extraction and polymerase chain reaction (PCR) amplification on the Illumina MiSeq platform were conducted. The results show that heavy metals contents in fine-sized fractions have higher values than those in coarse-sized fractions. Chemical fractionation analysis suggests that Zn and Cd are two of the most bioavailable metals impacted by anthropogenic activities. Cr and Cu contents in CSOs are relatively stable and could exist for extended periods. According to the RI analysis, CSOs pose a considerable risk (RI-G2) to receiving waters due to the higher bioavailability of Cd, which was consistent with the Igeo index. Furthermore, under the stress of the highly-bioavailable Cd and Cu, Gram +ves in the riparian benthic sediment gradually became dominant with metal-tolerance property. Therefore, long-term exposure to highly bioavailable metals could exhibit great impacts on microbial diversity.

Journal

Science of the Total EnvironmentElsevier

Published: Jun 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off