Characterization of ZDDP and ionic liquid tribofilms on non-metallic coatings providing insights of tribofilm formation mechanisms

Characterization of ZDDP and ionic liquid tribofilms on non-metallic coatings providing insights... Lubricant anti-wear additives are known to chemically interact with metallic surfaces to form a self-healing, wear-protection tribofilm. Their interactions with non-metallic surfaces are however less understood. Here we report recent findings on whether and how a zinc dialkyldithiophosphate (ZDDP) and a phosphonium–organophosphate ionic liquid (IL) form tribofilms on three hard coatings, AlMgB14–TiB2, TiB2, and diamond like carbon (a-C:H DLC), when sliding against a steel ball. Systematic characterization was conducted on the coating wear scars including top surface morphology imaging and elemental mapping, layer-by-layer chemical analysis, and cross section nanostructural examination. The ZDDP and IL tribofilms on the boride coatings are up to 50–70nm thick with 75–80% surface coverage while the tribofilms on DLC were <25nm thick and only covered 20–30% of the contact area. The presence of iron compounds in the tribofilms suggests a critical role for wear debris in tribofilm formation. Oxidation products of TiB2 were detected in the tribofilms, while no involvement of the DLC surface in tribofilm formation was observed. Results suggest that wear debris digestion and contact surface reaction both are critical in tribofilm formation: the former process is responsible in forming the bulk of the tribofilm and the latter provides strong bonding of the tribofilm to the contact surface. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Wear Elsevier

Characterization of ZDDP and ionic liquid tribofilms on non-metallic coatings providing insights of tribofilm formation mechanisms

Loading next page...
 
/lp/elsevier/characterization-of-zddp-and-ionic-liquid-tribofilms-on-non-metallic-74hdQR9Hk1
Publisher
Elsevier
Copyright
Copyright © 2015 Elsevier B.V.
ISSN
0043-1648
eISSN
1873-2577
D.O.I.
10.1016/j.wear.2015.01.076
Publisher site
See Article on Publisher Site

Abstract

Lubricant anti-wear additives are known to chemically interact with metallic surfaces to form a self-healing, wear-protection tribofilm. Their interactions with non-metallic surfaces are however less understood. Here we report recent findings on whether and how a zinc dialkyldithiophosphate (ZDDP) and a phosphonium–organophosphate ionic liquid (IL) form tribofilms on three hard coatings, AlMgB14–TiB2, TiB2, and diamond like carbon (a-C:H DLC), when sliding against a steel ball. Systematic characterization was conducted on the coating wear scars including top surface morphology imaging and elemental mapping, layer-by-layer chemical analysis, and cross section nanostructural examination. The ZDDP and IL tribofilms on the boride coatings are up to 50–70nm thick with 75–80% surface coverage while the tribofilms on DLC were <25nm thick and only covered 20–30% of the contact area. The presence of iron compounds in the tribofilms suggests a critical role for wear debris in tribofilm formation. Oxidation products of TiB2 were detected in the tribofilms, while no involvement of the DLC surface in tribofilm formation was observed. Results suggest that wear debris digestion and contact surface reaction both are critical in tribofilm formation: the former process is responsible in forming the bulk of the tribofilm and the latter provides strong bonding of the tribofilm to the contact surface.

Journal

WearElsevier

Published: May 1, 2015

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off