Characterization of adhesive interphase between epoxy and cement paste via Raman spectroscopy and mercury intrusion porosimetry

Characterization of adhesive interphase between epoxy and cement paste via Raman spectroscopy and... When exposed to harsh environmental conditions, the adhesive bond between epoxy and concrete was found to depend almost entirely on the effectiveness of the mechanical interlock which is contingent upon the ability of the adhesive to properly wet and penetrate the substrate. The current study is an investigation of the existence of a distinct interphase region within cement paste through the combined use of mercury intrusion porosimetry and Raman spectroscopy. A positive correlation between median pore size and depth of epoxy permeation into the cement paste substrate was observed. The Lucas-Washburn equation was found to accurately represent the driving mechanisms behind permeation of curing epoxy into the porous cement paste matrix. Interconnectivity of the capillary and gel pore structures was determined to play an important role in the permeation mechanisms. Analysis of relative conversion of epoxy via Raman spectroscopy in the interfacial region showed evidence of epoxy-cement paste interactions. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Cement and Concrete Composites Elsevier

Characterization of adhesive interphase between epoxy and cement paste via Raman spectroscopy and mercury intrusion porosimetry

Loading next page...
 
/lp/elsevier/characterization-of-adhesive-interphase-between-epoxy-and-cement-paste-vDMGc0AZle
Publisher
Elsevier
Copyright
Copyright © 2018 Elsevier Ltd
ISSN
0958-9465
D.O.I.
10.1016/j.cemconcomp.2018.01.012
Publisher site
See Article on Publisher Site

Abstract

When exposed to harsh environmental conditions, the adhesive bond between epoxy and concrete was found to depend almost entirely on the effectiveness of the mechanical interlock which is contingent upon the ability of the adhesive to properly wet and penetrate the substrate. The current study is an investigation of the existence of a distinct interphase region within cement paste through the combined use of mercury intrusion porosimetry and Raman spectroscopy. A positive correlation between median pore size and depth of epoxy permeation into the cement paste substrate was observed. The Lucas-Washburn equation was found to accurately represent the driving mechanisms behind permeation of curing epoxy into the porous cement paste matrix. Interconnectivity of the capillary and gel pore structures was determined to play an important role in the permeation mechanisms. Analysis of relative conversion of epoxy via Raman spectroscopy in the interfacial region showed evidence of epoxy-cement paste interactions.

Journal

Cement and Concrete CompositesElsevier

Published: Apr 1, 2018

References

You’re reading a free preview. Subscribe to read the entire article.


DeepDyve is your
personal research library

It’s your single place to instantly
discover and read the research
that matters to you.

Enjoy affordable access to
over 18 million articles from more than
15,000 peer-reviewed journals.

All for just $49/month

Explore the DeepDyve Library

Search

Query the DeepDyve database, plus search all of PubMed and Google Scholar seamlessly

Organize

Save any article or search result from DeepDyve, PubMed, and Google Scholar... all in one place.

Access

Get unlimited, online access to over 18 million full-text articles from more than 15,000 scientific journals.

Your journals are on DeepDyve

Read from thousands of the leading scholarly journals from SpringerNature, Elsevier, Wiley-Blackwell, Oxford University Press and more.

All the latest content is available, no embargo periods.

See the journals in your area

DeepDyve

Freelancer

DeepDyve

Pro

Price

FREE

$49/month
$360/year

Save searches from
Google Scholar,
PubMed

Create lists to
organize your research

Export lists, citations

Read DeepDyve articles

Abstract access only

Unlimited access to over
18 million full-text articles

Print

20 pages / month

PDF Discount

20% off